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ABSTRACT

This report focuses on efforts to improve Multiphysics Object-Oriented Simulation Environ-
ment (MOOSE) for mechanical property evaluation using data analytics. These efforts involve
improvements to the stochastic tools module (STM) for stochastic simulations of MOOSE mul-
tiphysics model and the development of inverse optimization capabilities. The report gives an
overview of the STM and describes recent updates to its core capabilities and theory on its
reduced-order model (ROM) schemes. Examples are also provided showing the impact of these
updates and exhibits the usefulness of ROMs. An overview of the gradient based inverse opti-
mziation algorithms are given along with examples of their application to source identification.
Inverse optimization will provide a new methodology in STM for fitting model parameters to
experimental data.
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1 Introduction

This report summarizes recent enhancements to Multiphysics Object-Oriented Simulation Environ-
ment (MOOSE) for rapid mechanical property evaluation using data analytics. These enhancements
were developed on two fronts: through stochastic analysis/reduced-order model (ROM) capabilities
and through inverse optimization. The first involves improvements and adding capabilities to the
MOOSE stochastic tools module (STM); extensive documentation involving the STM can be found
on the MOOSE website [1], some of which is presented in this report. The second involves the
creation of a gradient based partial differential equation (PDE) constrained inverse optimization
application named Isopod, which is a MOOSE-based application meant to be used in tandem with
other MOOSE applications to perform force and material property inversion. Isopod will be merged
into the STM at the end of fiscal year 2021 or early fiscal year 2022.

The STM is an open-source module within the MOOSE framework that any MOOSE-based
application can link to in order to perform stochastic analysis and reduced-order modeling. Appli-
cations currently using the STM include BISON, Grizzly, and Griffin. The primary goals of STM
are to:

• provide a MOOSE-like interface for performing stochastic analysis on MOOSE-based models,

• sample parameters, run applications, and gather data that is both efficient (memory and
run-time) and scalable,

• perform uncertainty quantification (UQ) and sensitivity analysis (SA) with distributed data,

• train ROMs to develop fast-evaluating surrogates of high-fidelity multiphysics models, and

• provide a pluggable interface for the surrogates.

The updates included in Section 2 of this report will specifically address each of these goals.
This report also covers the implementation of inverse optimization algorithms in Isopod. Inverse

optimization is an established mathematical framework to infer model parameters by minimizing
the misfit between the experimental and simulation observables. By using inverse optimization, a
user will be able to rapidly parameterize models to experimental data. The current optimization
algorithms in Isopod are limited to material and force inversion problems constrained by the PDE
for steady state heat conduction. An overview of the inverse optimization algorithms implemented
in Isopod are given in Section 3 along with examples for parameter estimation.
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2 Stochastic Tools Module and Surrogate Modeling

This section gives an overview of the STM capabilities and details updates/improvements over
the past year. The primary focus of the STM is to efficiently perform stochastic simulations of
multiphysics models developed in MOOSE-based applications. Stochastic simulations come in
various forms with many applications, including UQ, SA, and optimization, but the idea is to
run multiple variations of the same model while changing input parameters and gathering relevant
results, or quantities of interest (QoIs). The number of simulations, or variations on the model, can
vary wildly depending on the application, from dozens to billions. The STM provides a MOOSE-
like interface for performing these stochastic simulations, allowing a short learning process for those
who have used MOOSE applications before. Since the STM is within the MOOSE framework, it
has a unique position over “black-box” software like DAKOTA [2] by being able to hold relevant
data in memory, versus performing input/ouput file reading. This position allows the STM to be
extremely efficient in memory usage and scalable by keeping data distributed and reusing model
data where appropriate.

However, no matter how efficient the stochastic simulations are performed, the complexity of the
multiphysics model is the most significant factor for run-time. Complex, high-fidelity models could
require a large amount of computing resources to run a single simulation, performing stochastic
simulations on such a model could prove intractable. Therefore, the STM includes the ability to
train and utilize ROMs. ROMs serve as a surrogate to the high-fidelity full-order model (FOM),
which is meant to be used in place of the FOM to perform UQ, SA, or optimization. The process
involves a training phase which performs a relatively small number of simulations of the FOM to
build a ROM surrogate that is much faster to evaluate and returns comparable results as the FOM.
In the module, ROMs are known as surrogate models, these two terms are interchangeable in the
context of this report.

Sections 2.1 and 2.2 describe updates to the core capabilities of the module including its sampling
techniques, data handling system, and extendable model training. Section 2.3 introduces all the
ROM methods implemented in STM. Section 2.4 provides several example problems showing the
recently developed capabilities, focusing on the developed ROMs.

2.1 Batch Mode for Large Models
In order to run stochastic simulations of MOOSE models, the STM provides a Sampler system which
is used to produce a matrix of perturbed parameters. These Samplers can either randomly generate
perturbations (Monte Carlo or Latin Hypercube) or use pre-determined quantities (Cartesian grid
or sparse quadrature) to evolve the parameters. STM leverages the MultiApp and Transfer system
in MOOSE to run the MOOSE models with the perturbed parameters generated from Samplers.
This system is described in detail in [3]. The idea is that a main STM app instantiates sub-apps
of the same MOOSE model, transferring parameters from the Sampler to the parameters of the
model, running the sub-apps, then concatenating the QoIs from the model.

Because of the high-dimensional nature of model parameters, there is a potential of multi-
tudinous perturbations of model parameters needed; some problems use on the order of a billion
samples. As such, the Sampler and stochastic MultiApp systems need to be efficient and scalable in
run-time and memory. STM provides three different modes of operation: normal, batch-reset, and
batch-restore. Normal mode works by instantiating an app for each sample, or row of the Sampler
matrix. This is typical mode of operation for other MultiApp applications; however, instantiating
a full app for each sample can become intractable in memory for large stochastic runs. Therefore,
STM created the batch modes of operation. The idea is the main app instantiates a set number of
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apps, based on the number of processors used to run the study, and reuses that app for multiple
sets of samples.

Previously, running a stochastic study with STM in batch mode would create an app for each
processor used in the execution. This works well for small models since parallelizing samples is
generally more scalable than parallelizing the model and having a number of apps equal to the
number of processors is tractable in memory. However, for large models, it may be more efficient
to run a single sample with multiple processors and have only one app for that group of processors.
Therefore, two parameters were introduced to the SamplerFullSolveMultiApp and Sampler classes in
the STM: MultiApps/*/min procs per app and Samplers/*/min procs per row. As the names
suggest, these parameters will partition the samples and the sub-app runs such that that many
processors will be used for parameter perturbation. It is required that these two parameters be set
to the same value to ensure that the Sampler partitioning is equivalent to the MultiApp partitioning.
As an example, say 1,000 samples are being run with 100 processors in batch mode, without
setting these parameters 100 apps would be created running with 1 processor for 10 samples. With
min procs per app/min procs per row=10, 10 apps would be created running with 10 processors
for 100 samples. Section 2.4.1 shows a more detailed example with these parameters and how they
affect memory usage and run-time.

2.2 Generalizing Surrogate Training
The STM surrogate system provides a means of training and evaluating ROMs. The system involves
a two step procedure with different type of object for each step: Trainers for using predictor and QoI
data to generate model data (training) and Surrogates for using model data to build a functional
representation between the parameters and QoIs (evaluation). The training step usually involves
sampling a MOOSE model using a stochastic MuliApp to generate the QoI, this data, along with
the predictor data from the Sampler, is then used to generate the model data. The model data
can then either be directly used by a Surrogate object or be outputted to a MOOSE readable file
be used later by the Surrogate object. The second step is simply to use the Surrogate object as
surrogate of the original high-fidelity MOOSE model. A common practice is to train a surrogate
with a limited amount of samples, then use the surrogate to sample with many more perturbations
for statistical analysis. However, Surrogates were designed to pluggable with any other object tied
to the MOOSE framework.

Originally, Trainers were hard coded to use Samplers as predictor data and VectorPostproces-
sors as QoI data. However, this implementation was found to be too restrictive as it limits the
system to the type of data being retrieved and how the data was produced. To address the first
concern, MOOSE developed the Reporter system, which allows the output of any type of data
from simulations. This is a much more general system than the postprocessor/vector-postprocessor
system which only supported output of real numbers and vectors of real numbers. STM now uti-
lizes Reporters to gather the model output QoI data into vector-type values that are distributed
similarly to the Sampler. The surrogate Trainers were then refactored to be able to retrieve this
distributed data. In addition to using the Reporter system, Trainers were also refactored so that
either sampler values or model output values could be used as predictor data. This allows the
creation of surrogates to be much more general; for instance, surrogates can now be trained to
correlate QoIs, not just using the data used to produced the QoIs. New Trainers are now much
easier to develop, even those that require complicated predictor and/or QoI values.
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2.3 Surrogate Models
Along with core architecture of the surrogate system, various types of ROMs were added to STM.
The following sub-sections give a general overview of these methods, this information can be found
on the MOOSE-STM website:

• Section 2.3.1 Polynomial Chaos Expansion – https://mooseframework.inl.gov/source/

surrogates/PolynomialChaos.html

• Section 2.3.2 Polynomial Regression – https://mooseframework.inl.gov/source/surrog

ates/PolynomialRegressionSurrogate.html, https://mooseframework.inl.gov/sourc
e/surrogates/PolynomialRegressionTrainer.html

• Section 2.3.3 Gaussian Processing – https://mooseframework.inl.gov/source/surrogat

es/GaussianProcessTrainer.html

• Section 2.3.4 Proper Orthogonal Decomposition – https://mooseframework.inl.gov/sou

rce/surrogates/PODReducedBasisTrainer.html, https://mooseframework.inl.gov/s
ource/surrogates/PODReducedBasisSurrogate.html

2.3.1 Polynomial Chaos Expansion
Polynomial chaos (PC) is a surrogate modeling technique where a QoI that is dependent on input
parameters is expanded as a sum of orthogonal polynomials [4]. Given a QoI Q dependent on a set
of parameters ~ξ, the PC expansion is:

Q(~ξ) =

P∑
i=1

qiΦi(~ξ), (1)

where P is the multidimensional polynomial order and qi are coefficients that are to be computed.
These coefficients can be found using intrusive and non intrusive techniques. The intrusive technique
is quite difficult to generalize and very computationally demanding. Since the polynomial basis is
orthogonal, a non intrusive technique is developed where the coefficients are found by performing
a Galerkin projection and integrating:

qi =

〈
Q(~ξ)Φi(~ξ)

〉
〈

Φi(~ξ),Φi(~ξ)
〉 , (2)

where, 〈
a(~ξ)b(~ξ)

〉
=

∫ ∞
−∞

a(~ξ)b(~ξ)f(~ξ)d~ξ. (3)

The weight function (f(~ξ)) and bases (Φi(~ξ)) are typically products of one-dimensional functions:

f(~ξ) =

D∏
d=0

fd(ξd), (4)

Q(~ξ) =

P∑
i=1

qi

D∏
d=0

φdkd,i(ξd). (5)
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Table 1: Common probability density functions and their corresponding orthogonal polynomials

Distribution Density Function (fd(ξ)) Polynomial (φi(ξ)) Support

Normal 1
2πe
−ξ2/2 Hermite [−∞,∞]

Uniform 1
2 Legendre [−1, 1]

Beta (1−ξ)α(1+ξ)β

2α+β+1B(α+1,β+1)
Jacobi [−1, 1]

Exponential e−ξ Laguerre [0,∞]

Gamma ξαe−ξ

Γ(α+1) Generalized Laguerre [0,∞]

The weighting functions are defined by the probability density function of the parameter and
the polynomials are based on these distributions, Table 1 is a list of commonly used distributions
and their corresponding orthogonal polynomials.

The expression in Eq. (2) can be integrated using many different techniques. One is performing
a Monte Carlo integration,

qi =
1〈

Φi(~ξ),Φi(~ξ)
〉 1

Nmc

Nmc∑
n=1

Q(~ξn)Φi(~ξn), (6)

or using numerical quadrature,

qi =
1〈

Φi(~ξ),Φi(~ξ)
〉 Nq∑
n=1

wnQ(~ξn)Φi(~ξn). (7)

The numerical quadrature method is typically much more efficient that than the Monte Carlo
method and has the added benefit of exactly integrating the polynomial basis. However, the
quadrature suffers from the curse of dimensionality. The naive approach uses a Cartesian product
of one-dimensional quadratures, which results in (max(kdi ) + 1)D quadrature points to be sampled.
Sparse grids can help mitigate the curse of dimensionality significantly [5].

In PC, a tuple describes the combination of polynomial orders representing the expansion basis
(kd,i). Again, the naive approach would be to do a tensor product of highest polynomial order,
but this is often wasteful since generating a complete monomial basis is usually optimal. Below
demonstrates the difference between a tensor basis and a complete monomial basis:

D = 2, kmax = 2, Tensor product:

Φ0 = φ1
0φ

2
0, Φ1 = φ1

1φ
2
0, Φ2 = φ1

0φ
2
1, Φ3 = φ1

1φ
2
1

Φ4 = φ1
2φ

2
0, Φ5 = φ1

0φ
2
2, Φ6 = φ1

1φ
2
2, Φ7 = φ1

2φ
2
1, Φ8 = φ1

2φ
2
2,

(8)

D = 2, kmax = 2, Complete monomial:

Φ0 = φ1
0φ

2
0, Φ1 = φ1

1φ
2
0, Φ2 = φ1

0φ
2
1, Φ3 = φ1

1φ
2
1Φ4 = φ1

2φ
2
0, Φ5 = φ1

0φ
2
2.

(9)

The tuple is generated and stored as matrix in the Trainer object, below is an example of this
matrix with D = 3 and kmax = 3:

kd,i =

 0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 0 0 0 0
0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 3 2 1 0
0 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 0 1 2 3

 (10)
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Statistical moments are based on the expectation of a function of the quantity of interest:

E
[
g
(
Q(~ξ)

)]
=

∫ ∞
−∞

g
(
Q(~ξ)

)
f(~ξ)d~ξ. (11)

The first four statistical moments, and the most common ones, are defined as:

Mean: µ = E[Q], (12)

Variance: σ2 = E
[
(Q− µ)2

]
= E[Q2]− µ2, (13)

Skewness: Skew =
E
[
(Q− µ)3

]
σ3

=
E[Q3]− 3σ2µ− µ3

σ3
, (14)

Kurtosis: Kurt =
E
[
(Q− µ)4

]
σ4

=
E[Q4]− 4E[Q3]µ+ 6σ2µ2 + 3µ4

σ4
. (15)

Because of the orthogonality of the polynomials, mean and variance are trivial to compute:

E [Qpc] = q0, (16)

E
[
Q2

pc

]
=

P∑
i=1

q2
i

D∏
d=1

〈
φ2
kd,i

〉
, (17)

where
〈
Φ2
i

〉
is known analytically. The higher order moments are significantly more taxing to

compute since it does not take advantage of orthogonality:

E
[
Q3

pc

]
=

P∑
i=1

P∑
j=1

P∑
k=1

qiqjqk

D∏
d=1

〈
φkd,iφkd,jφkd,k

〉
, (18)

E
[
Q4

pc

]
=

P∑
i=1

P∑
j=1

P∑
k=1

P∑
`=1

qiqjqkq`

D∏
d=1

〈
φkd,iφkd,jφkd,kφkd,`

〉
, (19)

where the polynomial norms are computed using one-dimensional quadrature. We see here the
number of operations required to compute Kurtosis is approximately DN4. If the number of
coefficients is sufficiently high, these moments would probably be best computed inexactly by
sampling the PC surrogate.

The PolynomialChaosTrainer takes in a list of distributions and constructs a polynomial class
based on their type. Given a sampler and a vector Reporter of results from sampling, it then loops
through the MC or quadrature points to compute the coefficients. The statistical moments are then
computed based on user preferences and the model can be evaluated using the evaluate function
from any other moose object that has the reference. The algorithm uses the parallelization of the
sampler to compute the coefficients, no other part of the algorithm is parallelized.

2.3.2 Polynomial Regression
Polynomial regression (PR) is a similar ROM technique as PC where a QoI Q is expanded as a sum
of polynomials dependent on a set of parameters ~ξ, as in Eq. (1) [6]. However, these polynomials
are not necessarily orthogonal and do not depend on the parameters’ probability distribution:

Φi(~ξ) = ~ξi =
D∏
j=1

x
ij
j , i = 1, ..., P. (20)
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In order determine the coefficients of the PR model, and ordinary least squares (OLS) procedure is
used. OLS is performed by representing the parameter training data as a matrix and the QoI data
as a vector:

X =


ξ1,1 ξ1,2 . . . ξ1,D

ξ2,1 ξ2,2 . . . ξ2,D
...

....
. . .

...
ξN,1 ξN,2 . . . ξN,D

 =


~ξT1
~ξT2
...
~ξTN

 , (21)

y =


Q(~ξ1)

Q(~ξ2)
...

Q(~ξN )

 . (22)

For convenience, a regression matrix can be defined as:

R =


Φ1(~ξ1) Φ2(~ξ1) . . . ΦP (~ξ1)

Φ1(~ξ2) Φ2(~ξ2) . . . ΦP (~ξ2)
...

...
. . .

...

ΦN (~ξ1) Φ2(~ξN ) . . . ΦP (~ξN )

 . (23)

Using the regression matrix R and an OLS approach, the unknown coefficients can be deter-
mined as follows:

~q ≡


q1

q2
...
qP

 =
(
RTR

)−1
RTy. (24)

Finally, it must be mentioned that this method is only applicable if Np ≤ N and keeping Np << N
is recommended.

Unfortunately, the OLS approach is known to have some issues like:

• It is prone to overfit the data,

• It yields inaccurate results if the input variables are correlated,

• It is sensitive to outliers.

To tackle the problem, an L2 regularization, or Tikhonov regularization, is adopted to make
sure that the coefficients of the expansion do not have uncontrollably high values. This extended
least squares regression is often referred to as Ridge Regression [7]. In this scenario the coefficients
can be determined by solving:

~q =
(
RTR + λI

)−1
RTy, (25)

where λ is a penalty parameter which penalizes coefficients with large magnitudes. As λ → 0,
Ridge regression converges to OLS.
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2.3.3 Gaussian Processing
“Gaussian Processes for Machine Learning” [8] provides a well written discussion of Gaussian
processing (GP), and a brief summary of its Chapters 1-5 are presented here for background.
Given a set of inputs X for which we have made observations of the correspond outputs y using
the system (y = Q(X)). Given another set of inputs X? = {~ξT?1, · · · , ~ξT?M} we wish to predict the
associated outputs y? = Q(X?) without evaluation of Q(X?), which is presumed costly.

In overly simplistic terms, GP modeling is driven by the idea that trials which are “close” in
their input parameter space will be “close” in their output space. Closeness in the parameter space
is driven by the covariance function k(~ξ, ~ξ′) (also called a kernel function, not to be confused with
a MOOSE kernel). This covariance function is used to generate a covariance matrix between the
complete set of parameters X ∪ X? = {~ξ1, · · · , ~ξN , ~ξ?1, · · · , ~ξ?M}, which can then be interpreted
block-wise as various covariance matrices between X and X?.

K(X ∪X?, X ∪X?) =



k(~ξ1, ~ξ1) · · · k(~ξ1, ~ξN ) k(~ξ1, ~ξ?1) · · · k(~ξ1, ~ξ?M )
...

. . .
...

...
. . .

...

(~ξN , ~ξ1) · · · k(~ξN , ~ξN ) k(~ξN , ~ξ?1) · · · k(~ξN , ~ξ?M )

k(~ξ?1, ~ξ1) · · · k(~ξ?1, ~ξN ) k(~ξ?1, ~ξ?1) · · · k(~ξ?1, ~ξ?M )
...

...
...

...

k(~ξ?M , ~ξ1) · · · k(~ξ?M , ~ξN ) k(~ξ?M , ~ξ?1) · · · k(~ξ?M , ~ξ?M )


=

[
K(X,X) K(X,X?)

K(X?,X) K(X?,X?)

]
=

[
K K?

KT
? K??

]
.

(26)

The GP model consists of an infinite collection of functions, all of which agree with the train-
ing/observation data. Importantly the collection has closed forms for 2nd order statistics (mean
and variance). When used as a surrogate, the nominal value is chosen to be the mean value. The
method can be broken down into two step: definition of the prior distribution then conditioning on
observed data.

A Gaussian process is a (potentially infinite) collection of random variables, such that the
joint distribution of every finite selection of random variables from the collection is a Gaussian
distribution.

GP(µ(~ξ), k(~ξ, ~ξ′)). (27)

In an analogous way that a multivariate Gaussian is completely defined by its mean vector and its
covariance matrix, a Gaussian Process is completely defined by its mean function and covariance
function. The (potentially) infinite number of random variables within the Gaussian process cor-
respond to the (potentially) infinite points in the parameter space our surrogate can be evaluated
at.

We assume the observations (both training and testing) are pulled from an N +M multivariate
Gaussian distribution. The covariance matrix Σ is the result of the choice of covariance function.

y ∪ y? ∼ N (µ,Σ). (28)

Note that µ and Σ are a vector and matrix respectively, and are a result of the mean and covariance
functions applied to the sample points. Discussions of GP are typically presented under assumption
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that µ = 0. This occurs without loss of generality since any sample can be made µ = 0 by subtract-
ing the sample mean (or a variety of other preprocessing options). Note that in a training/testing
paradigm, the testing data y? is unknown, so determination of what to use as µ is based on the
information from the training data y (or some other prior assumption). The covariance functions
currently implemented in STM are listed below.

• Squared exponential – Also referred to as a radial basis function (RBF) this is a widely used,
general purpose covariance function. Serves as a common starting point for many.

• Exponential – A simple exponential covariance function.

• Matern half integer – Implementation of the Matern class of covariance function, where the
ν parameter takes on half-integer values.

With the prior formed as above, conditioning on the available training data Y is performed.
This alters the mean and variance to new values µ? and Σ?, restricting the set of possible functions
which agree with the training data.

µ? = µ+ K?K
−1(y − µ) (29)

Σ? = K?? −KT
? K−1K?, (30)

y? ∼ N (µ?,Σ?). (31)

When used as a surrogate, the nominal value is typically taken as the mean value, with diag(Σ?)
providing variances which can be used to generate confidence intervals.

While the only apparent decision in the above formulation is the choice of covariance function,
most covariance functions will contain hyperparameters of some form which need to be selected
in some manner. While each covariance function will have its own set of hyperparameters, a few
hyperparameters of specific forms are present in many common covariance functions. Frequently
Kernels consider the distance between two input parameters ~ξ and ~ξ′. For system of only a single
parameter this distance often takes the form of

|ξ − ξ′|
`

. (32)

In this form the ` factor set a relevant length scale for the distance measurements. When multiple
input parameters are to be considered, it may be advantageous to specify M different length scales
for each of the M parameters, resulting in a vector ~̀. For example distance may be calculated as√√√√ M∑

i=1

(
ξi − ξ′i
`i

)2

. (33)

When used with standardized parameters, ` can be interpreted in units of standard deviation for the
relevant parameter. Signal variance (σ2

f ) serves as an overall scaling parameter. Given a covariance

function k̃ (which is not a function of σ2
f ), the multiplication of σ2

f yields a new valid covariance
function.

k(x, x′, σf ) = σ2
f k̃(x, x′) (34)

This multiplication can also be pulled out of the covariance matrix formation, and simply multiply
the matrix formed by k̃

K(ξ, ξ′, σf ) = σ2
f K̃(ξ, ξ′) (35)
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Noise variance (σ2
n) represents noise in the collected data, and is an additional σ2

n factor on the
variance terms (when ξ = ξ′).

k(x, x′, σf , σn) = σ2
f k̃(x, x′) + σ2

n δx,x′ (36)

In the matrix representation this adds a factor of σ2
n to diagonal of the noiseless matrix K̃

K(x, x′, σf , σn) = σ2
f K̃(x, x′) + σ2

nI (37)

Due to the addition of σ2
n along the diagonal of the K matrix, this hyperparameter can aid in

the the inversion of the covariance matrix. For this reason adding a small amount of σ2
n may be

preferable, even when you believe the data to be noise free.

2.3.4 Proper Orthogonal Decomposition
Proper Orthogonal Decomposition (POD) is an intrusive reduced basis (RB) method which, unlike
non-intrusive surrogates such as PR or PC, is capable of considering the physics of the full-order
problem at surrogate level [9]. Therefore, it is often referred to as a physics-based but still data-
driven approach. The intrusiveness, however, decreases the range of problems which this method
can be used for. Currently in the STM, this surrogate model can deal with parameterized scalar-
valued linear steady-state PDEs with affine parameter dependence only. The POD Trainer object
is responsible for two steps in the generation of the surrogate model: generation of reduced sub-
spaces and generation of reduced operators. It must be mentioned that in POD-RB literature, the
training phase is often referred to as offline phase and in this section the two expressions are used
interchangeably.

Before the details of the above-mentioned steps are discussed, a short overview is given about
the problems considered. A scalar-valued linear steady-state PDE can be expressed in operator
notation as:

Au = b, (38)

where u is the solution, A is a linear operator and b is a source term. The linear operator and
the source terms may depend on uncertain parameters which are denoted by ξi, i = 0, ..., D and
organized into a parameter vector ~ξ = [ξ1, ..., ξD]T . Therefore, Eq. (38) can be expressed as:

A(~ξ)u = b(~ξ). (39)

This also means that the solution itself is the function of these parameters u = u(~ξ). To make an
efficient surrogate, operator A(~ξ) and source b(~ξ) should have an affine parameter dependence:

A(~ξ) =

NA∑
i=1

fAi (~ξ)Ai, and b(~ξ) =

Nb∑
i=1

f bi (~ξ)bi, (40)

or in other words, the operators have to be decomposable as the sums of products of parameter-
dependent scalar functions and parameter-independent constituent operators. By plugging the
decompositions back to Eq. (39), the problem takes the following form:(

NA∑
i=1

fAi (~ξ)Ai

)
u =

Nb∑
i=1

f bi (~ξ)bi. (41)

Therefore, before starting the construction of a POD-RB surrogate model, the user must identify
the these decompositions first. At input level, this can be done by utilizing the Tagging system. For
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each constituent operator a separate vector tag has to be created and the tags need to be supplied
to the trainer object through the tag names input parameter. Furthermore, an indicator shall be
added to each tag through the tag types input to show if the tag corresponds to a source term
(bi) or an operator (Ai). As a last step, this system is discretized in space using the finite element
method to obtain: (

NA∑
i=1

fAi (~ξ)Ai

)
u =

Nb∑
i=1

f bi (~ξ)bi, (42)

where Ai and bi are finite element matrices and vectors, while u denotes the vector containing
the values of the degrees of freedom. This model is referred to as FOM in subsequent sections.
Furthermore, let u(~ξ∗) denote a solution vector which is obtained by solving Eq. (42) with ~ξ = ~ξ∗ .

Even though it is not explicitly stated above, u may contain solutions for multiple variables,
hence it can be expressed as u = [u1; ...; uNv ], where Nv is the total number of variables. It is
assumed that each variable has Ni, i = 1, ..., Nv spatial degrees of freedom, thus the size of the full-

order system is
Nv∑
i=1

Ni. As a first step in this process, Eq. (42) is solved using Ns different parameter

samples and the solution vectors for each variable defined on the var names input parameter are
saved into snapshot matrices

Si = [ui(~ξ1), ...,ui(~ξNs)]. (43)

The next step in this process is to use these snapshots to create reduced sub-spaces for each variable.
This can be done by performing POD on the snapshot matrices, which consists of the following
four steps for each variable:

1. Creation of correlation matrices: The correlation matrices (Ci) can be computed using the
snapshot matrices as Ci = STi WiSi, where Wi is a weighting matrix. At this moment only
Wi = I is supported, where I is the identity matrix.

2. Eigenvalue decomposition of the correlation matrices: The eigenvalue decompositions of the
correlation matrices is obtained as: Ci = ViΛiV

T
i , where matrix Vi and matrix Λi contain

the eigenvectors and eigenvalues of Ci, respectively.

3. Determining the dimension of the reduced subspace: Based on the magnitude of the eigen-
values (λi,k, k = 1, ..., Ns) in Λi, one can compute how many basis functions are needed
to reconstruct the snapshots with a given accuracy. The rank of the subspace (ri) can be
determined as:

ri = arg min
1≤ri≤Ns

(∑ri
k=1 λi,k∑Ns
k=1 λi,k

> 1− τi

)
, (44)

where τ is a given parameter describing the allowed error in the reconstruction of the snap-
shots.

4. The reconstruction of the basis vectors for each variable: For this, the eigenvalues and eigen-
vectors of the correlation matrices are used together with the snapshots as:

Φi,k =
1√
λi,k

Ns∑
j=1

Vi,k,jSi,j , (45)

where Φi,k is the k-th (k = 1, ..., ri) basis function of the reduced subspace for variable ui.
Moreover, Vi,k,j denottes the j-th element of the k-th eigenvector of correlation matrix Ci. It
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is important to remember that Φi,k has a global support in space, and shall not be mistaken
for the local basis functions (φ) of the finite element approximation. The global basis vectors
can be also referred to as POD modes and the two expressions are used interchangeably from
here on.

Finally, the solutions of different variables in the full-order model can be approximated as the
parameter-dependent linear combination of these basis functions:

ui(~ξ) ≈
ri∑
k=1

Φi,kci,k(~ξ), or ui(~ξ) ≈ Φici(~ξ) (46)

where Φi = [Φi,1, ...,Φi,ri ] is a matrix with the POD modes as columns and ci = [ci,1, ..., ci,ri ]
T are

the expansion coefficients. In essence, these coefficients describe the coordinates of the approximate
solution in the reduced subspace. To approximate the full solution vector u(~ξ) using its components
(ui(~ξ)-s), a segregated approach is used as follows:

u(~ξ) =

 u1
...

uNv

 ≈
 Φ1c1(~ξ)

...

ΦNscNs(
~ξ)

 =


Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . .

...
0 0 · · · ΦNs




c1(~ξ)

c2(~ξ)
...

cNs(
~ξ)

 = Φc(~ξ). (47)

It is important to mention that in this approximation the unknowns are the elements of c(~ξ) vector.

In most of the cases, the size of this vector (
Nv∑
i=1

ri) is considerably smaller than the size of the original

solution vector (
Nv∑
i=1

Ni).

To generate reduced operators, Eq. (47) is plugged into Eq. (42) first:(
NA∑
i=1

fAi (~ξ)Ai

)
Φc(~ξ) =

Nb∑
i=1

f bi (~ξ)bi. (48)

Since the size of c is smaller than the size of u, this equation is under-determined. To solve this
problem, a Galerkin projection is used on the system:

ΦT

(
NA∑
i=1

fAi (~ξ)Ai

)
Φc(~ξ) = ΦT

Nb∑
i=1

f bi (~ξ)bi. (49)

By pulling the basis matrices into the summation, the following form is obtained.(
NA∑
i=1

fAi (~ξ)ΦTAiΦ

)
c(~ξ) =

Nb∑
i=1

f bi (~ξ)ΦTbi, (50)

where the reduced operators Ar
i = ΦTAiΦ and source terms bri = ΦTbi can be precomputed once

the basis functions are available. Therefore, the reduced equation system that is solved to obtain
c(~ξ) is (

NA∑
i=1

fAi (~ξ)Ar
i

)
c(~ξ) =

Nb∑
i=1

f bi (~ξ)bri . (51)
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It is important to note that this equation system is of size
Nv∑
i=1

ri ×
Nv∑
i=1

ri, therefore it can be solved

much faster than the original full-order system which is of size
Nv∑
i=1

Ni ×
Nv∑
i=1

Ni. The computation

of the reduced operators consists of two step in the current implementation:

1. Computing the effect of the full-order operator on the global basis functions: This step
includes the creation of AiΦ. In practice, this is done by plugging in the basis function
into a PODFullSolveMultiApp object which evaluates the residual for a given vector tag
(defined using the tag names input argument). The tagged residual is then transferred back
to the trainer using a PODResidualTransfer object. In case when the residual from a kernel
contains contributions to both the system matrix and the source term (e.g. Dirichlet BC or
time derivative), certain input-level tricks can be used to separate these.

2. Projection of the residual vectors: this step consists of computing the ΦT (AiΦ) inner prod-
ucts.

As a final note, it must emphasized that even though obtaining snapshots and creating reduced
operators is a computationally expensive procedure, it has to be carried out only once. After this
initial investment every new evaluation for a new parameter sample involves the summation and
scaling of small dense matrices, which is of low computational cost.

As of now, the training phase is implemented in a semi-parallel manner. This means that
the snapshot generation, correlation matrix generation, base generation and the computation of
the reduced operators are all executed in parallel. However, the eigenvalues and eigenvectors of
the correlation matrices are obtained in serial. Therefore, this phase may experience considerable
slowdown when the number of snapshots is large (above ∼2000).

The surrogate object, PODReducedBasisSurrogate, takes the reduced operators and bases from
the trainer and assembles the reduced equation system for a new parameter sample (~ξ∗):(

NA∑
i=1

fAi (~ξ∗)Ar
i

)
c(~ξ∗) =

Nb∑
i=1

f bi (~ξ∗)bri . (52)

Following this, the reduced equation system is solved for c(~ξ∗) and an approximate solution is
reconstructed as

u(~ξ∗) ≈ Φc(~ξ∗). (53)

It must be mentioned that in case of Dirichlet boundary conditions (either nodal or in weak form)
there is a contribution in Ar

Dir and brDir as well. However, in this case a penalty parameter (γ)
is used to enforce the boundary condition at reduced order level. Therefore, the slightly modified
equation system can be written as:(

NA−1∑
i=1

fAi (~ξ∗)Ar
i + γfADir(

~ξ∗)Ar
Dir

)
c(~ξ∗) =

Nb−1∑
i=1

f bi (~ξ∗)bri + γf bDir(
~ξ∗)brDir. (54)

the magnitude of γ can be set using the penalty parameter in the input file. It is important to
note that by increasing the magnitude of γ, the condition number of the reduced equation may
deteriorate, therefore the overly high values are not recommended. It is also important to mention
that the size of the reduced system can be modified by changing the number of bases per variable in
the input file. To do this one can use change rank and new ranks input parameters. This feature
makes it possible to test the accuracy of the surrogate with different subspace sizes without the
need of rerunning the training procedure.
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2.4 Examples
This section presents some results from the updates of STM. The first, Section 2.4.1, shows
the memory and run-time performance of running samples on a relatively large MOOSE model.
The second, Section 2.4.2, applies the non-intrusive ROM techniques to a simple heat conduction
problem. Section 2.4.3 shows an example of the intrusive POD ROM. Finally, Section 2.4.4
performs a parameter study of a multiphysics problem using the PC surrogate. More documentation
on these examples can be found on the following pages of the MOOSE website:

• Section 2.4.1: https://mooseframework.inl.gov/modules/stochastic tools/batch mod

e.html

• Section 2.4.2: https://mooseframework.inl.gov/modules/stochastic tools/examples/

poly chaos surrogate.html, https://mooseframework.inl.gov/modules/stochastic t

ools/examples/poly regression surrogate.html, https://mooseframework.inl.gov/m
odules/stochastic tools/examples/gaussian process surrogate.html

• Section 2.4.3: https://mooseframework.inl.gov/modules/stochastic tools/examples/

pod rb surrogate.html

• Section 2.4.4: https://mooseframework.inl.gov/modules/combined/examples/stm the

rmomechanics.html

2.4.1 Batch Mode Scaling Study
This example is meant to demonstrate the batch mode system in the STM and the new capability
of specifying a minimum number of processors per sample. The SamplerFullSolveMultiApp and
SamplerTransientMultiApp are capable of running sub-apps in “batch” mode. In normal operation
these to object create one sub-app for every row of data in the supplied Sampler object. In batch
mode one sub-app is created per processor, or group of processors, and re-used to solve for each row
of data. In general, there are three modes of operation for the stochastic tools MultiApp objects.

1. normal: One sub-app is created for each row of data supplied by the Sampler object.

2. batch-reset: One sub-application is created for each group of processors, this sub-app is
destroyed and re-created for each row of data supplied by the Sampler object.

3. batch-restore: One sub-app is created for each group of processors, this sub-app is backed
up after initialization. Then for each row of data supplied by the Sampler object the sub-app
is restored to the initial state prior to execution.

All three modes are available when using SamplerFullSolveMultiApp, the ”batch-reset” mode is
not available for SamplerTransientMultiApp because the sub-application have state that must be
maintained as simulation time progresses. The primary benefit to using a batch mode is to improve
performance of a simulation by reducing the memory of the running application. The performance
gains depend on the type of sub-app being executed as well as the number of samples being
evaluated. The following highlight the performance improvements that may be expected for full
solve sub-apps.

The first example demonstrates the performance improvements to expect when using Sampler-
FullSolveMultiApp with the use of one processor. In this case, the sub-app solves a steady-state
diffusion on a unit cube domain with Dirichlet boundary conditions on the left, x = 0, and right,
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y = 1, sides of the domain. This first demonstration uses a relatively small mesh with 103 3D
elements. The main app does not perform a solve; it performs a stochastic analysis using Monte
Carlo sampling to perturb the values of the two Dirichlet conditions on the sub-applications to
vary with a uniform distribution. The example is executed to demonstrate memory performance
of the various modes of operation: “normal”, “batch-reset”, and “batch-restore”. Each mode is
executed with an increasing number of Monte Carlo samples by setting the num rows parameter of
the MonteCarlo object. Figure 1 show the resulting memory use at the end of the simulation for
each mode of operation with increasing sample numbers.

Figure 1: Total memory at the end of the simulation using a SamplerFullSolveMultiApp with
increasing number of Monte Carlo samples for the three available modes of operation running on a
single processor.

An important feature of the various modes of operation is that run-time is not negatively
impacted by changing the mode; in some cases using a batch mode can actually decrease total
simulation run time. The total run time results for the full solve problem is shown in Figure 2.
The time shown in these plots is the total simulation time, which encompasses both the simulation
initialization and solve. The differences in speed are mainly due to the installation and destruction
of the sub-application. When running in “batch-reset” mode, each data sample causes the sub-app
to be created and destroyed during the solve, causing the slowest performance. The “normal” mode
creates all sub-apps up front, and the “batch-restore” method uses the backup-restore capability
to save the state of the sub-applications, thus does not require as many instantiations and has the
lowest run-time. For this example, the solve portion is minimal as such the sub-app creation time
plays a large role. As the solve time increases time gains can be expected to be minimal.

The second part of this example utilizes the min procs per app input parameter for Sampler-
FullSolveMultiApp for a large version of the previous diffusion problem. Figure 3 shows the total
memory usage for various selections of the parameter and varying problem size. Figure 4 shows the
corresponding run-time for these problems. All of these simulations were run with 100 processors
(mpiexec -n 100). The results show that for small problems using more processors has minimal
impact on memory and negatively affect run-time. However, for the larger problems the memory
savings become much more apparent and the effect on run-time is minimal.
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Figure 2: Total execution time of a simulation using a SamplerFullSolveMultiApp with increasing
number of Monte Carlo samples for the three available modes of operation running on a single
processor.

(a) 104 Elements (b) 105 Elements

(c) 106 Elements

Figure 3: Total memory usage for stochastic sampling of steady-state diffusion problem with varying
number of elements and minimum processors per sample.
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(a) 104 Elements (b) 105 Elements

(c) 106 Elements

Figure 4: Execution time for stochastic sampling of steady-state diffusion problem with varying
number of elements and minimum processors per sample.

2.4.2 Comparing Surrogate Models – Simple Heat Conduction
This example applies three of the non-intrusive ROM techniques in STM (PC, PR, and GP) to a
simple heat conduction problem. The purpose is to demonstrate how to build ROMs and what they
can be used for. This example uses a one-dimensional heat conduction problem as the full-order
model which has certain uncertain parameters. The model equation is as follows:

−kd
2T

dx2
= q , x ∈ [0, L], (55)

dT

dx

∣∣∣∣
x=0

= 0

T (x = L) = T∞

(56)

The QoI is the average temperature:

T̄ =

∫ L
0 T (x)dx

L
, (57)
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For demonstration, each of the uncertain parameters will have a uniform probability distribution
(U(a, b)). Where a and b are the max and minimum bounds of the uniform distribution, respectively.
The uncertain parameters for this model problem are described in Table 2.

Table 2: Uncertain parameter definition for 1D heat conduction example

Parameter Symbol Distribution

Conductivity k ∼ U(1, 10)
Volumetric Heat Source q ∼ U(9000, 11000)
Domain Size L ∼ U(0.01, 0.05)
Right Boundary Temperature T∞ ∼ U(290, 310)

This simple model problem has analytical descriptions for the field temperature and average
temperature:

T (x, k, q, L, T∞) =
q

2k

(
L2 − x2

)
+ T∞, (58)

T̄ (k, q, L, T∞) =
qL2

3k
+ T∞, (59)

(60)

With the quadratic feature of the field temperature, using quadratic elements in the discretization
will actually yield the exact solution.

The input file used to solve the one-dimensional heat conduction model can be found in Listing 1.
With this input the uncertain parameters are defined as:

1. k → Materials/conductivity/prop values

2. q → Kernels/source/value

3. L→ Mesh/xmax

4. T∞ → BCs/right/value

The input file used to train the surrogate models can be found in Listing 2. The uncertainty
in each parameter is represented by a Distribution in the main STM input which a Sampler then
evaluates to create a sampling matrix. The objects in blocks Controls, MultiApps, Transfers, and
Reporters are responsible for managing the communication between main and sub-apps, execution
of the sub-apps and the collection of the results.

The next step is to setup the Trainers. The required parameters for a PC trainer are:

• distributions specify the type of polynomials to use for the expansion, it is very import
that these distributions match the distributions given to the sampler.

• sampler is the object that will provide sample points which are given to the sub app during
execution.

• response specifies the result vector for storing the computed values.

• order defines the maximum order of the PC expansion, this parameter ultimately defines the
accuracy and complexity of the surrogate model.

The parameters for PR are:
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• sampler is the object that will provide sample points which are given to the sub app during
execution.

• response specifies the result vector for storing the computed values.

• max degree describes the maximum order of polynomial used in the regression. This is similar
to the order parameter for PC.

• regression type determines the algorithm used to compute the coefficients of the regression,
ols is default OLS scheme and specifying ridge will perform Ridge regression.

Defining the GP trainer is slightly more complicated. First the Covariance function must be
defined, SquaredExponentialCovariance is used for this example. Because the signal variance

and length factor are very difficult to optimize by hand, GaussianProcessTrainer uses a TAO
optimization algorithm to determine these values. The parameters for the GP trainer are:

• covariance function is the name of the Covariance object used for training.

• standardize params/standardize data centers and scales the parameter/response data if
set to true.

• tune parameters determines which parameters in the Covariance object to optimize.

• tuning max/tuning min determines the absolution max/min values that the tuned Covari-
ance parameters can be set to. This is useful for ensuring the optimization algorithm produces
useful results.

• tao options is an advanced parameter which feeds options to the optimization solver.

All Trainer objects create variables that Surrogates can use for evaluation. Saving this data
will allow the surrogate to be run separately in another input. SurrogateTrainerOutput is used to
output training data.

Evaluating surrogate models typically occurs in a separate run with a separate input file, see
Listing 3. In this file, the Surrogate model can be loaded by inputting the training data file with the
filename parameter. Evaluating a surrogate model occurs within objects that obtain the surrogate
object’s reference and call the evaluate function. In this example, EvaluateSurrogate is used to
evalaute the surrogate with a new sampler. The results of evaluating the surrogate can then be
used to compute statistics. Table 3 shows the results of computing the statistics from evaluating
each surrogate.

Table 3: Statistics results from evaluating trained ROMs of heat conduction problem.

Model Mean Standard Deviation

Reference 300.893 5.8545
PC 300.866 4.9773
PR 300.896 5.8565
GP 300.802 5.9920
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2.4.3 Intrusive POD Training
This example is meant to demonstrate how a POD reduced basis surrogate model is trained and
used on a parametric problem. The full-order model is a one energy group, fixed-source diffusion-
reaction problem, adopted from [10]. The geometry for this problem is presented in Figure 5. The
problem has four different material regions, from which three (1, 2 and 3) act as fixed sources. The

Figure 5: The geometry of the diffusion-reaction problem used in this example

fixed-source diffusion-reaction problem with space dependent coefficients can be expressed as:

−∇ · [D(r)∇ψ(r)] + Σa(r)ψ(r) = q(r) , r ∈ Ω, (61)

where D(r) is the diffusion coefficient, Σa(r) is the reaction coefficient, q(r) is the fixed source term
and field variable ψ(r) is the solution of interest. Furthermore, Ω denotes the internal domain,
without the boundaries, which can be partitioned into four sub-domains corresponding to the four
material regions (Ω1, Ω2, Ω3 and Ω4). This equation needs to be supplemented with boundary
conditions. For the symmetry lines (dashed lines in Figure 5, denoted by ∂Ωsym) a homogeneous
Neumann condition is used:

−D(r)∇ψ(r) · n(r) = 0 , r ∈ ∂Ωsym, (62)

while the rest of the boundaries (in the reflector, denoted by ∂Ωrefl) are treated with homogeneous
Dirichlet conditions:

ψ(r) = 0 , r ∈ ∂Ωrefl. (63)

This problem is parametric in a sense that the solution depends on the values of the coeffi-
cients and the source: ψ = ψ (r, D(r),Σa(r), q(r)). In this example, material region-wise constant
coefficients and source terms are considered yielding eight uncertain parameters altogether (assum-
ing that Region 4 does not have a source). The material properties in each region have uniform
distributions (U(a, b)) specified in Table 4 with a and b being the lower and upper bounds.
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Table 4: The distributions of the uncertain parameters used in [10]

Parameter Symbol Distribution

Diffusion coefficient in Region 1 (cm) D1 ∼ U(0.2, 0.8)
Diffusion coefficient in Region 2 (cm) D2 ∼ U(0.2, 0.8)
Diffusion coefficient in Region 3 (cm) D3 ∼ U(0.2, 0.8)
Diffusion coefficient in Region 4 (cm) D4 ∼ U(0.15, 0.6)
Reaction coefficient in Region 1

(
cm−1

)
Σa,1 ∼ U(0.0425, 0.17)

Reaction coefficient in Region 2
(
cm−1

)
Σa,2 ∼ U(0.065, 0.26)

Reaction coefficient in Region 3
(
cm−1

)
Σa,3 ∼ U(0.04, 0.16)

Reaction coefficient in Region 4
(
cm−1

)
Σa,4 ∼ U(0.005, 0.02)

Fixed-source in Region 1
(

n
cm3·s

)
q1 ∼ U(5, 20)

Fixed-source in Region 2
(

n
cm3·s

)
q2 ∼ U(5, 20)

Fixed-source in Region 3
(

n
cm3·s

)
q3 ∼ U(5, 20)

It is important to mention that POD-RB surrogates are only efficient when the original problem
has an affine decomposition. Luckily, the problem at hand has an affine decomposition in the
following form:

−
4∑
i=1

∇ · [Di(r)∇ψ(r)] +
4∑
i=1

Σa,i(r)ψ(r) =
3∑
i=1

qi(r) , r ∈ Ω, (64)

where Di(r), Σa,i(r) and qi(r) take the values of Di, Σa,i and qi when r ∈ Ωi and 0 otherwise.
The first step towards creating a POD-RB surrogate model is the generation of a full-order

problem which can solve Eq. (61) with fixed parameters, see Listing 4. There are three important
factors that need to be considered while preparing the input file for this problem:

1. The user must specify vector tags in the Problem block for each component in the affine de-
composition of the system. In this example, 8 vector tags are specified for the eight uncertain
parameters. These do not introduce extra work in the full-order model, however they help to
identify the affine components throughout the training phase.

2. The input file has to reflect the affine decomposition of the problem. This means that the
Kernels, BCs, and Materials have to be created in a way that they correspond to the com-
ponents in the affine decomposition. Note that a separate kernel has been created for every
single term in the decomposition. The vector tags in the ‘Problem‘ block are then applied
to these kernels to ensure that the affine components are correctly identified throughout the
training phase.

3. The values for each uncertain parameter have to be set to 1 by default. This is necessary
because the PODReducedBasisTrainer uses the same input file to create the affine constituent
operators. This ensures that the mentioned operators are not influenced by the parameter-
dependent multipliers. Of course, these values are not fixed and are changed by the main
application throughout the simulations to values aligned with those in Table 4. However, the
default values in the input file should be set to one.

The input file used for training a POD surrogate model can be found in Listing 5. The first step
in training is the collection of data, which involves the repeated execution of the full-order problem
with different parameter combinations and the saving of the full solution vectors. These solution
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vectors are often referred to as snapshots and this naming is preferred in this example as well. This
step is managed by the main training input file which creates parameter samples, transfers them
to the sub-app and collects the results from the completed computations. The snapshot collection
phase starts with the definition of the distributions in the Distributions block. As a next step,
the underlying distributions are sampled to create parameter combinations. This is done using a
LatinHypercubeSampler defined in the Samplers block. It is visible that 100 samples are prepared,
meaning that 100 snapshots will be collected for the generation of the surrogates. To be able to
create the reduced operators for the surrogate model, a custom MultiApp, PODFullSolveMultiApp,
has been created. This object is responsible for executing sub-problems using different combinations
of parameter values provided by the sampler. The secondary function of this object is to create
the action of the full-order operators on the basis functions of the reduced subspace. Therefore,
this object has to be executed twice in the same simulation. It is visible that unlike a regular
SamplerFullSolveMultiApp, this custom object has to know certain parameters of the trainer as
well. In terms of the Transfers block, besides sending the actual parameter samples to the sub-
apps, in this intrusive procedure, the snapshots need to be collected from the sub-apps, the basis
functions need to be sent back to different sub-applications and the action of the operators on the
basis functions need to be collected as well. This requires four transfer objects. The two custom
types (PODSamplerSolutionTransfer and PODResidualTransfer) are specifically used to support
PODReducedBasisTrainer at this moment. Next, the PODReducedBasisTrainer is set up in the
Trainers block. The trainer stores the snapshots and uses them to create basis functions for the
reduced subspaces. Furthermore, it is also responsible for creating the reduced-order operators,
therefore it needs to be executed twice in the training process. The trainer object needs to know
what variable needs to be reduced and the names of the vector tags from the sub-app to be able
to identify the affine constituent operators. Furthermore, using the tag types input argument,
the user has to specify if the reduced affine constituent operator acts on the variable or not. The
ordering must be the same as the names of the vector tags. The meaning of the energy retention
limits is discussed in PODReducedBasisTrainer. As a last step in the training process, the basis
functions, reduced operators and every necessary information for the surrogate are saved into an
.rd file. This file can be then used to construct a surrogate model without the need to repeat the
training process.

To evaluate surrogate models, a new input file has to be created, see Listing 6. In this example,
the same distributions are defined for the parameters as used in the training phase. Therefore, the
content of the Distributions block is identical to the one in the trainer input file. As a next step,
new samples are generated using these distributions. Again, a LatinHypercubeSampler is employed
for this task, however this time the number of samples is increased to 1000 since the surrogates are
orders of magnitudes faster than the full-order model. A PODReducedBasisSurrogate is created in
the Surrogates block. It is constructed using the information available within the corresponding .rd

file and allows the user to change of the rank of the sub-spaces used for different variables through
change rank and new ranks parameters. These surrogate models can be evaluated at the points
defined in the testing sample batch by a PODSurrogateTester object in the VectorPostprocessors
block. In this case, QoI is the nodal L2 norm of the solution for ψ.

In the remainder of this section, a short analysis is provided for the results obtained using the
example input files. As already mentioned, the problem has 8 uncertain parameters and altogether
100 parameter samples are generated using LatinHypercubeSampler to obtain snapshots for the
training. Three examples of the snapshots are presented in Figure 6. It is visible that depending
on the actual parameter combination, the profile of the solution can change considerably.
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Figure 6: Various snapshots of the FOM during training POD surrogate.

After all of the snapshots are obtained, the basis functions of the reduced subspaces are ex-
tracted. In this scenario, an energy retention limit of 0.999 999 999 is used in the trainer which
will keep 55 basis functions for the reduced subspace. The decay of the eigenvalues of the snapshot
correlation matrix is shown in Figure 7. The reduced operators are then computed using these 55
basis functions.

Figure 7: Screen plot of the eigenvalues of the correlation matrix.

As a next step, two surrogate models are prepared using the change rank and new ranks

parameters of PODReducedBasisSurrogate to change the size of the reduced system. The first
surrogate model has 1 basis function, while the other has 8. Both models are then run on a 1000
sample test set and the nodal L2 norms of the approximate solutions are saved. Additionally, a
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full-order model was executed on the same test set and the results are saved to serve as reference
values. Figure 8 presents the results with the surrogate model built with 1 basis function only. It
is visible that the distribution of the QoI (nodal L2 norm) on the test set is considerably different
than the reference distribution.

Figure 8: The histogram of the QoI for the FOM reference and the surrogate built with 1 basis
function.

Figure 9 shows the distribution of the QoI obtained by a surrogate with 8 basis functions. It is
visible that the difference between the reference values and those from the surrogate is negligible.

To see the convergence of the results from the surrogate to those of the full-order model, the
surrogate model is run multiple times with different ranks and the following error indicators are
computed for each sample in the test set:

ei =
||ψRef − ψSurr||l2
||ψRef ||l2

. i = 1, ..., 1000. (65)

Then, the maximum and average relative errors are recorder as function of the number of basis
functions used. Figure 10 shows the results. It is visible that by increasing the number of basis
functions, both error indicators decrease rapidly.

Lastly, the computation time FOM on the test set is compared to the combined cost of training
and evaluating a POD surrogate model in Table 5. The test has been carried out on one processor
only, not using the parallel capabilities of the MultiApp system. The results show that it is beneficial
to create a POD surrogate if more than 148 evaluations are needed. This assumes that the full-
order evaluation time can be equally distributed among the 1000 test samples (0.779 s/sample).
By dividing the training time with this number we get a critical sample number above which the
generation of a surrogate model is a better alternative.
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Figure 9: The histogram of the QoI for the FOM reference and the surrogate built with 8 basis
function.

Figure 10: The POD convergence of averaged quantities of interest.

Table 5: The computation time of the full-order solutions on the test set compared to the cost of
training a surrogate and evaluating it on the same test set.

Process Execution time (s)

Evaluation of the FOM with 1000 sample test set 779.5
Training a POD surrogate using 100 samples 116.2
Evaluating POD surrogate with 1000 sample test set (4 basis functions) 0.592
Evaluating POD surrogate with 1000 sample test set (8 basis functions) 0.937
Evaluating POD surrogate with 1000 sample test set (16 basis functions) 1.576
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2.4.4 Parameter Study and Surrogate Modeling of Multiphysics
Problem

The purpose of this section is to present a multiphysics example using STM. The intention is to
showcase the capabilities of the module to produce statistically relevant results including uncer-
tainty propagation and sensitivity, as well as the module’s surrogate modeling infrastructure. The
problem of interest is a thermomechanics model using a combination of the heat conduction and
tensor mechanics modules. The problem involves multiple uncertain material properties and mul-
tiple QoIs. Using both Monte Carlo sampling and polynomial chaos surrogate modeling, the effect
of these properties’ uncertainties are quantified with uncertainty propagation and global sensitivity
analysis.

The problem of interest involves a steady-state thermomechanics model. The geometry is a 3-D
finite hollow cylinder with two concentric layers of different material properties, seen in Figure 11.
Due to symmetry, only 1/8 of the cylinder is represented by the mesh. The inner surface of the
ring is exposed to a surface heat source that has a cosine shape along the axis of the cylinder
with its peak being at the center. The end and outside of the cylinder have convective boundary
conditions. The cylinder is free to displace in all directions due to the thermal expansion. The
relevant material and geometric properties are listed in Table 6. This table also lists the “uncertain”
parameters that will be described later. For reference, the temperature and displacement profiles
are shown in Figure 12 where the uncertain properties are set to some arbitrary values.

Figure 11: Thermomechanics model problem geometry

A total of nine properties of the model are not known exactly, but with some known probability
of values occurring. The probabilities are represented by each parameter’s probability distribution.
All parameters have a independent uniform distribution, U(a, b), where a and b are the lower and
upper limit values for the property, respectively. Table 7 lists the details of each of the property’s
distribution.
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Table 6: Material properties for thermomechanics cylinder

Property Symbol Value Units

Half Cyliner Height L 3 m
Inner Radius R 1.0 m
Inner Ring Width r1 0.1 m
Outer Ring Width r2 0.1 m
Outer Heat Transfer Coef. houter 10 W/m2·K
Outer Free Temperature T∞,outer 300 K
End Heat Transfer Coef. hend 10 W/m2·K
End Free Temperature T∞,end 300 K
Heat Source Magnitude Qt Uncertain W
Inner Thermal Conductivity k1 Uncertain W/m·K
Outer Thermal Conductivity k2 Uncertain W/m·K
Inner Young’s Modulus Y1 Uncertain Pa
Outer Young’s Modulus Y2 Uncertain Pa
Inner Poisson’s Ratio ν1 Uncertain
Outer Poisson’s Ratio ν2 Uncertain
Inner Thermal Expansion Coef. α1 Uncertain 1/K
Outer Thermal Expansion Coef. α2 Uncertain 1/K
At Rest Temperature T0 300 K

(a) Temperature (K) (b) Displacement (m) (c) X-Displacement (m)

(d) Y-Displacement (m) (e) Z-Displacement (m)

Figure 12: Example temperature and displacement profiles of thermomechanics problem.
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Table 7: Uniform distribution parameters for uncertain properties

Index Property a b

1 k1 20 30
2 k2 90 110
3 Qt 9000 11000
4 α1 1.0×10−6 3.0×10−6

5 α2 0.5×10−6 1.5×10−6

6 Y1 2.0×105 2.2×105

7 Y2 3.0×105 3.2×105

8 ν1 0.29 0.31
9 ν2 0.19 0.21

There are a total of ten QoIs for the model, which involve temperature and displacement:

1. Temperature at center of inner surface — T1,c

2. Temperature at center of outer surface — T2,c

3. Temperature at end of inner surface — T1,e

4. Temperature at end of outer surface — T2,e

5. x-displacement at center of inner surface — δx,1,c

6. x-displacement at center of outer surface — δx,2,c

7. x-displacement at end of inner surface — δx,1,e

8. x-displacement at end of outer surface — δx,2,e

9. z-displacement at end of inner surface — δz,1

10. z-displacement at end of outer surface — δz,2

Figure 13 shows geometrically where these QoIs are located in the model.

Figure 13: Geometric description of quantities of interest
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This example uses the statistics and Sobol sensitivity capabilities available in STM. The goal
of this exercise is to understand how the uncertainty in the parameters affects the the resulting
QoIs. This is done through sampling the model at different perturbations of the parameters and
performing statistical calculations on resulting QoI values. Two methods are used to perform this
analysis. First is using the sampler system to perturb the uncertain properties and retrieve the QoIs
which will undergo the analysis. The second is training a polynomial chaos surrogate and using
that reduced order model to sample and perform the analysis. The idea is that many evaluations of
the model are necessary to compute accurate statistical quantities and surrogate modeling speeds
up this computation by requiring much fewer full model evaluations for training and is significantly
faster to evaluate once trained.

Using Latin hypercube sampling, the thermomechanics model was run with a total of 100,000
samples. A order four polynomial chaos surrogate was training using a Smolyak sparse quadrature
for a total of 7,344 runs of the full model. Table 8 shows the run-time for sampling the full order
model and training and evaluating the surrogate. We see here that cumulative time for training and
evaluating the surrogate is much smaller than just sampling the full order model, this is because
building the surrogate required far fewer evaluations of the full model and evaluating the surrogate
is much faster than evaluating the full model.

Table 8: Stochastic run-time results for thermomechanics problem

Simulation Samples CPU Time

Full-Order Sampling 100,000 176 hr
Polynomial Chaos — Training 7,344 13.7 hr
Polynomial Chaos — Evaluation 100,000 6.8 s

Table 9 shows the statistical results of sampling the thermomechanis model and the polynomial
chaos surrogate. µ and σ represent the mean and standard deviation of the QoI, and CI is the
confidence interval. Note that the confidence interval for the PC statistics is not relevant since
these values were found analytically using integration techniques. Figure 14 compares several of
the probability distributions of the QoIs between sampling the FOM and the PC surrogate.

Table 9: Statistics results for themomechanics problem

QoI µ 95% CI σ 95% CI PC – µ PC – σ

T1,c 609.97 (609.87, 610.06) 18.22 (18.18, 18.27) 609.97 18.23
T2,c 586.85 (586.77, 586.94) 16.64 (16.60, 16.68) 586.85 16.64
T1,e 506.31 (506.25, 506.37) 12.05 (12.03, 12.08) 506.31 12.05
T2,e 507.92 (507.85, 507.98) 12.13 (12.10, 12.15) 507.92 12.12
δx,1,c 4.032E-04 (4.028E-04, 4.037E-04) 8.608E-05 (8.581E-05, 8.636E-05) 4.032E-04 8.625E-05
δx,2,c 4.996E-04 (4.990E-04, 5.001E-04) 1.078E-04 (1.075E-04, 1.082E-04) 4.996E-04 1.081E-04
δx,1,e 4.220E-04 (4.213E-04, 4.226E-04) 1.255E-04 (1.252E-04, 1.258E-04) 4.220E-04 1.256E-04
δx,2,e 4.793E-04 (4.786E-04, 4.800E-04) 1.352E-04 (1.349E-04, 1.356E-04) 4.794E-04 1.354E-04
δz,1 6.139E-04 (6.131E-04, 6.146E-04) 1.466E-04 (1.462E-04, 1.470E-04) 6.139E-04 1.469E-04
δz,2 4.995E-04 (4.989E-04, 5.000E-04) 1.067E-04 (1.065E-04, 1.072E-04) 4.995E-04 1.071E-04

Sobol sensitivities, or Sobol indicies, are a metric to compare the global sensitivity a parameter
has on a QoI. This examples demonstrates several different types of the sensitivities. The first is
total sensitivity, which measure the total sensitivity from a parameter, Figure 15 shows these values
for each QoI and parameter. The second is a correlative sensitivity, which measures the sensitivity
due to a combination of parameters, Figure 16 show heat maps of these values for several QoIs.
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(a) T1,c (b) δx,1,c

Figure 14: Resulting probability distribution for several QoIs.

Figure 15: Total Sobol sensitivities
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(a) T1,c

(b) δx,1,c

Figure 16: Second order Sobol sensitivities for several QoIs.

31



3 Inverse Optimization

This section gives an overview of the inverse optimization capabilities developed last year. Sec-
tion 3.1 describes the theory for PDE constrained constrained optimization. Gradient terms needed
for gradient based optimization are derived in Section 3.2 for the adjoint equation and PDE deriva-
tives are given in Section 3.3. Section 3.4 gives an example of PDE constrained optimization
applied to the parameterization of boundary conditions and body loads. The over all flow of the
optimization algorithm implemented in the MOOSE based app isopod is shown in Figure 17. In
this example, the internal heat source, qv, is being parameterized to match the simulated and ex-
perimental steady state temperature fields, T̃ and T , respectively. Step one of the optimization
cycle consists of adjusting the internal heat source, qv. In step two, the physics model is solved
with the current qv to obtain a simulated temperature field, T . In step three, the simulated and
experimental temperature fields are compared via the objective function, J . If J is below the user
defined threshold, the optimization cycle stops and the best fit parameterization of qv is found. If J
is above the user defined threshold, the optimization algorithm determines a new qv and the process
is repeated. In the next section, methods for determining the next iteration of the parameterized
value, in this case qv, will be presented.

qv

Unknown parameter:  
Heat Source, !!

"

#"
Objective Function:

Modify ! until J is minimized using 
Stochastic Tools (Monte Carlo), RAVEN 
(gradient-free) or TAO (gradient)

min! % &, ! = 1
2+"#$

%
&" − -&"

&

Physics Model:

Forward Problem

. &, ! = ∇'0∇& + 2( = 0

Experimental, "#

Simulation, #

Figure 17: Optimization cycle example for parameterizaing an internal heat source distribution qv
to match the simulated and experimental temperature field, T and T̃ , respectively.

3.1 PDE Constrained Inverse Optimization
Inverse optimization is a mathematical framework to infer model parameters by minimizing the
misfit between the experimental and simulation observables. In this work, our model is a PDE
describing the physics of the experiment. We solve our physics PDE using the finite element method
as implemented in MOOSE. The physics of our problem constrains our optimization algorithm. A
PDE-constrained inverse optimization framework is formulated as an abstract optimization problem
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[11]:
min
p
J (u,p) ; subject to g (u,p) = 0, (66)

where J(u,p) is our objective function, which is a scalar measure of the misfit between experimental
and simulated responses, along with any regularization [12]. The constraint, g (u,p) = 0, consists
of the PDEs governing the multiphysics phenomena simulated by MOOSE (e.g. coupled heat and
elasticity equations), p contains model parameters (e.g. material properties or loads) and u contains
simulated responses (e.g. temperature and displacement fields). The equations in Eq. (66) appear
simple on the outset but are extremely difficult to solve. The solution space can span millions of
degrees of freedom and the parameter space can also be very large. Finally, the PDEs can be highly
nonlinear, time-dependent and tightly coupling complex phenomena across multiple physics.

Optimization problems can be solved using either global (gradient-free) or local (gradient-based)
approaches [13]. Global approaches require a large number of iterations compared to gradient-based
approaches (e.g. conjugate gradient or Newton-type methods), making the latter more suitable to
problems with a large parameter space and computationally expensive models. The PETSc TAO
optimization library [14] is used to solve Eq. (66). Optimization libraries like TAO require access to
functions for computing the objective (J), gradient (dJ/dp) and Hessian

(
d2J/dp2

)
or a function

to take the action of the Hessian on a vector. An objective function measuring the misfit or distance
between the simulation and experimental data usually has the form

J(u,p) =
1

2

∑
i

(ui − ūi)2 +
ρ

2

∑
i

p2, (67)

where the first integral is an L2 norm or euclidean distance between the experimental solution,
ū, and the simulated solution, u. The second integral provides Tikhonov regularization on the
parameters, p, for ill-posed problems where ρ controls the amount of regularization. Other types
of regularization may also be used.

Gradient-free optimization solvers only require a function to solve for the objective given in
Eq. (67). Solving for the objective only requires solving a forward problem to determine u and then
plugging that into Eq. (67) to determine J . The forward problem is defined as the FEM model of the
experiment which the analyst should have already made before attempting to perform optimization.
The parameters that go into the forward problem (e.g. pressure distributions on sidesets or material
properties) are adjusted by the optimization solver and the forward problem is recomputed. This
process continues until J is below some user defined threshold. The basic gradient-free solver
available in TAO is the simplex or Nelder-Mead method. Gradient-free optimization solvers are
robust and straight-forward to use. Unfortunately, their computational cost scales exponentially
with the number of parameters. When the forward model is a computationally expensive FEM
model, gradient-free approaches quickly become computationally expensive.

Gradient-based optimization algorithms require fewer iterations but require functions to solve
for the gradient vector and sometimes Hessians matrix. TAO has petsc options to evaluate
finite difference based gradients and Hessians by solving the objective function multiple times with
perturbed parameters, which also requires multiple solves of the forward problem. Finite difference
gradients and Hessians are good for testing an optimization approach but become computationally
expensive for realistic problems.

Given the large parameter space, we resort to the adjoint method for gradient computation;
unlike finite difference approaches, the computational cost of adjoint methods is independent of the
number of parameters (ref18). In the adjoint method, the gradient, i.e. the total derivative dJ/dp,
is computed as,

dJ

dp
=
∂J

∂p
+ λ

∂g

∂p
, (68)
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where ∂J/∂p accounts for the regularization in Eq. (67) and λ is the adjoint variable solved for
from the adjoint equation (

∂g

∂u

)>
λ =

(
∂J

∂u

)>
, (69)

where (∂g/∂u)> is the adjoint of the Jacobian for the original forward problem, g, and (∂J/∂u)>

is a body force like term that accounts for the misfit between the computed and experimental data.
Thus, the solution to Eq. (69) has the same complexity as the solution to the forward problem.

The remaining step for evaluating the derivative of the PDE in Eq. (68) is to compute ∂g/∂p,
the derivative of the PDE with respect to the parameter vector. The form this term takes is
dependent on the physics (e.g. mechanics or heat conduction) and the parameter being optimized
(e.g. force inversion versus material inversion). In what follows, we will derive the adjoint equation
for steady state heat conduction and the gradient term for both force and material inversion.

3.2 Adjoint Problem for Steady State Heat Conduction
In this section, we are interested in solving the following PDE-constrained optimization problem
from Eq. (66) for steady state heat conduction:

min
p

J (T,p) =
1

2

N∑
i=1

(
Ti − T̄i

)2
,

subject to g (T,p) = ∇ · κ∇T + fb = 0, in Ω,

(70)

where J is the objective function from Eq. (67) without regularization, fb is the distributed heat
flux, T is the experimental temperature field being compared to our simulation temperature at
discrete locations, T̄i. Other forms for the objective function are possible such as different norms
or different types of measurements that may require integration over a line or volume.

We also have the following boundary conditions for our PDE,

T = TD, on ΓD,

(κ∇T ) · n = G (T ) , on ΓR,
(71)

where n is the normal vector, ΓD is the Dirichlet boundary, and ΓR is the Robin or mixed boundary.
Common cases for G (T ) are:

Neumann: G (T ) = G = fn,

Convection: G (T ) = h(T − T∞),
(72)

where h is the heat transfer coefficient and fn is independent of T . The objective function can also
be expressed in a integral form for the case of N point measurements as follows

J =
1

2

N∑
i=1

∫
δ(x− xi)

(
T − T̄i

)2
dΩ. (73)

We take the equivalent, variational approach to derive the adjoint. Thus, the Lagrangian of
this problem is

L(T,p, λ) = J +

∫
(∇ · κ∇T + fb)λ dΩ

= J +

∫
(fbλ) dΩ +

∫
(∇ · κ∇T )λ dΩ.

(74)

34



The divergence theorem is applied to the last term in Eq. (74) giving∫
(∇ · κ∇T )λ dΩ =

∫
λ (κ∇T ) · n dΓ−

∫
(κ∇λ) · ∇T dΩ

=

∫
[λ (κ∇T ) · n− T (κ∇λ) · n] dΓ +

∫
(∇ · κ∇λ)T dΩ.

(75)

By substituting the above and Eq. (73) into Eq. (74), we have

L(T,p, λ) =A(T,p, λ) + B(T,p, λ),

A(T,p, λ) =
1

2

N∑
i=1

∫
δ(x− xi)

(
T − T̄

)2
dΩ +

∫
(fbλ) dΩ +

∫
(∇ · κ∇λ)T dΩ,

B(T,p, λ) =

∫
[λ (κ∇T ) · n− T (κ∇λ) · n] dΓ,

(76)

where λ is the Lagrange multiplier field known as the adjoint state or costate variable. The
Lagrangian has been broken up into terms integrated over the body, A, and boundary terms, B. In
order to determine the boundary conditions for the adjoint equation, the boundary integral terms,
B, in Eq. (76) are further broken up into their separate domains, ΓD and ΓR, given in Eq. (71)
resulting in

B =

∫
[λ (κ∇T ) · n− T (κ∇λ) · n] dΓ

=

∫
ΓR

λG(T ) dΓ +

∫
ΓD

λκ∇T · n dΓ−
∫

ΓR

Tκ∇λ · n dΓ−
∫

ΓD

Toκ∇λ · n dΓ,
(77)

where To is the prescribed temperature on the Dirichlet boundary, ΓD. The variation of L with
respect to T is then given by δL = δA+ δB where the variation of the body terms with respect to
T are given by

δA =
N∑
i=1

∫
δ(x− xi)

(
T − T̄

)
δTdΩ +

∫
(∇ · κ∇λ) δT dΩ

=

∫ (
(∇ · κ∇λ) +

N∑
i=1

δ(x− xi)
(
T − T̄

))
δT dΩ,

(78)

and the variation of B with respect to T is given as

δB =

∫
ΓR

λ
dG(T )

dT
δTdΓ−

∫
ΓR

(κ∇λ · n) δTdΓ +

∫
ΓD

λ (κ∇δT · n) dΓ

=

∫
ΓR

(λh− (κ∇λ · n)) δTdΓ +

∫
ΓD

λ (κ∇δT · n) dΓ,

(79)

where dG(T )/dT = h from Eq. (71) was used. Combining Eq. (78) and Eq. (79) to get δL results
in

δL =δA+ δB

=

∫ (
(∇ · κ∇λ) +

N∑
i=1

δ(x− xi)
(
T − T̄

))
δT dΩ

+

∫
ΓR

(λh− (κ∇λ · n)) δTdΓ +

∫
ΓD

λ (κ∇δT · n) dΓ.

(80)
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Stationarity of L would require δL = 0 for all admissible δT . Setting each of the integrals in
Eq. (80) results in the adjoint problem and its boundary conditions

∇ · κ∇λ+
N∑
i=1

δ(x− xi)(T − T̄ ) = 0, in Ω,

λ = 0, on ΓD,

κ∇λ · n = λh, on ΓR.

(81)

Solving Eq. (81) comes down to adjusting the boundary conditions and load vector from the forward
problem and re-solving.

3.3 PDE Derivatives for Inversion
In this section we will present derivatives for steady state heat conduction Eq. (70) with respect to
the force or material parameters. For all of these examples, measurement data is taken at specific
locations where the objective function can be represented by Eq. (73). We will present the discrete
forms of our PDE and its derivative which most closely matches the implementation that will be
used in MOOSE. The discrete form of the PDE constraint for steady state heat conduction in
Eq. (70), ĝ, is given as

ĝ = KT̂− f̂ = 0, (82)

where K is the Jacobian matrix, T̂ and f̂ are the discretized temperature and residual vectors.
Element-wise definitions of the terms are

Kαβ =
∑
e

∫
∇>Nα · κ · ∇Nβ dΩ,

f̂
α

=
∑
e

∫
NαfbdΩ +

∑
e

∫
NαG(T ) dΓR,

(83)

where Nα denotes the finite element shape function at node α. The solution can be expressed as
T (x) ≈

∑
α NαT̂

α
= N T̂. Note here the f̂ includes the contribution from both the body load term

(fb in Eq. (70)) and boundary conditions (see Eq. (71)). We are assuming a Galerkin form for our
discretized PDE by making our test and trial functions identical (both are Nα). Note in the rest of
this document, we omit the superscript of the shape function (i.e., (·)α) and the summation over
all the elements (i.e.,

∑
e) for simplicity.

To compute the derivative of PDE with respect to the design parameters, i.e., ∂g/∂p, it can be
seen from Eq. (83) that the derivatives can come from either K or f̂. For problems that have design
parameters that are embedded in fb and/or the Neumann boundary condition in G(T ), we call
them force inversion problems, since the derivative only depends on the body load. For design
parameters that are embedded in K and/or the convection boundary condition in G(T ), indicating
dependence on the material property, we call them material inversion problems. Derivative
calculation of different force inversion and material inversion problems are included in Subsections
3.3.1 - 3.3.3.
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3.3.1 PDE Derivatives for Force Inversion
We will first consider the simple case of load parameterization for body loads, fb (in Eq. (70)),
where the gradient is given as

∂ĝ

∂p
=
∂ĝ

∂f̂

∂f̂

∂fb

∂fb
∂p

=
∂f̂

∂fb

∂fb
∂p

=

∫
N · ∂fb(x)

∂p
dΩ,

(84)

by taking the chain rule from Eq. (82) and Eq. (83). The gradient term requires the derivative of
fb to be integrated over the volume Ω.

For the first case, we will consider a volumetric heat source that varies linearly across the body,
which is given by

fb(x) = p0 + p1x, (85)

with p0 and p1 the design parameters. Therefore, the derivative can be calculated as

∂ĝ

∂p
=

∫
N · ∂fb(x)

∂p
dΩ

=

[∫
N · ∂fb

∂p0
dΩ,

∫
N · ∂fb

∂p1
dΩ

]>
=

[∫
N · (1) dΩ,

∫
N · (x) dΩ

]>
.

(86)

In the next force inversion case, we parameterize the intensity of np point heat sources, where
the heat source takes the form

fb(x) =

np∑
i=1

δ (x− xi) pi for i = 1 . . . np. (87)

The corresponding gradient term is given by

∂ĝ

∂pi
=

∫
N · ∂fb(x)

∂pi
dΩ

=

∫
N · δ (x− xi) dΩ for i = 1 . . . np,

(88)

which makes the gradient equal to one at the locations of the point loads.
Next, we will use force inversion to parameterize a Neumann boundary condition with the heat

flux on the boundary being a function of the coordinates, G(x), given by

∂ĝ

∂p
=
∂ĝ

∂f̂

∂f̂

∂G(x)

∂G(x)

∂p

=
∂f̂

∂G(x)

∂G(x)

∂p

=

∫
ΓR

N · ∂G(x)

∂p
dΓ,

(89)

37



where the derivative of G(x) is now integrated over the boundary ΓR. For instance, if we have a
linearly varying heat flux

G(x) = p0 + p1x, (90)

with p0 and p1 the design parameters, then

∂ĝ

∂p
=

[
∂ĝ

∂p0
,
∂ĝ

∂p1

]>
=

[∫
ΓR

N · ∂G(x)

∂p0
dΓ,

∫
ΓR

N · ∂G(x)

∂p1
dΓ

]>
=

[∫
ΓR

N dΓ,

∫
ΓR

Nx dΓ

]>
.

(91)

The above force inversion examples, Eqs. (84)-(91), are all linear optimization problems where
the parameter being optimized does not show up in the derivative term. Linear optimization
problems are not overly sensitive to the location of measurement points or the initial guesses for
the parameter being optimized, making them easy to solve. In the following we parameterize a
Gaussian body force given by

fb(x) = a · exp

(
−(x− b)2

2c2

)
, (92)

where a is the height or intensity of the Gaussian curve, b is the location of the peak of the curve,
and c is the standard deviation of the curve or its width. Parameterizing a Gaussian curve can result
in a linear or nonlinear optimization problem depending on which parameter is being optimized.
Parameterizing this function for the height, a, results in the following linear optimization problem
derivative

∂ĝ

∂p
=
∂ĝ

∂a
=

∫
N · ∂fb(x)

∂a
dΩ

=

∫
N · exp

(
−(x− b)2

2c2

)
dΩ,

(93)

where the parameter a being optimized does not show up in the derivative term. However, if we try
to parameterize for the location of the peak of the Gaussian curve, b, we get the following nonlinear
optimization problem derivative

∂ĝ

∂p
=
∂ĝ

∂b
=

∫
N · ∂fb(x)

∂b
dΩ

=

∫
N · a(x− b)

c2
exp

(
−(x− b)2

2c2

)
dΩ,

(94)

where the parameter b remains in the derivative term. Optimizing for the peak location of a
Gaussian heat source, Eq. (94), will be a much more difficult problem to solve than Eq. (93) and
convergence will be dependent on the initial guesses given for b and the locations where measurement
data is taken.

3.3.2 PDE Derivative for Convective Boundary Conditions
In this section, the convective heat transfer coefficient, h, is considered as a parameter for the
convection boundary condition given in Eq. (72). This is a material inversion problem with integral
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limited to the boundary, ΓR. The boundary condition is given by G(T ) = h (T − T∞) on ΓR. The
PDE derivative term is given by

∂ĝ

∂p
=
∂ĝ

∂h
=

∫
ΓR

N · ∂G(x)

∂h
dΓ

=

∫
ΓR

N · (T − T∞) dΓ.

(95)

This derivative requires the solution from the forward problem T to be included in the integral over
the boundary ΓR which again results in a nonlinear optimization problem.

3.3.3 PDE Derivative for Material Inversion
In Sections 3.3.1 and 3.3.2, the design parameters only exist in the load terms. Therefore, the
derivatives of g(x) with respect to the design parameters are only related to the form of the load
function, not the Jacobian. In this section, we consider cases where the design parameters exist
in the Jacobian term, which make the derivative calculation more convoluted. One such example
is the material inversion, where we identify the thermal conductivity (κ) through experimentally
measured temperature data points. Here, the derivative of g(x) is taken with respect to κ. This
requires the derivative of K in Eq. (82) leading to

∂ĝ

∂p
=

∫
∇N> · ∂κ

∂p
· ∇N dΩ · T̂

=

∫
∇N> · ∂κ

∂p
· ∇T dΩ,

(96)

where ∇NT̂ = ∇T was used in the last line. Material inversion is also a nonlinear optimization
problem since T shows up in the derivative, making the derivative dependent on the solution to
the forward problem.

This also works for temperature dependent thermal conductivity

κ (T ) = αT 2 + βT, (97)

where α and β are the design parameters. The resultant derivative is then

∂ĝ

∂p
=

[
∂ĝ

∂α
,
∂ĝ

∂β

]>
=

[∫
∇N> · ∂κ

∂α
· ∇T dΩ,

∫
∇N> · ∂κ

∂β
· ∇T dΩ

]>
=

[∫
∇N> ·

(
T 2
)
· ∇T dΩ,

∫
∇N> · (T ) · ∇T dΩ

]>
.

(98)

3.4 Force Inversion Example
The framework for solving PDE constrained optimization problems presented in Sections 3.1-3.3
has been implemented in the MOOSE based app isopod for the steady state heat equation. Isopod
is a research application containing the classes needed to perform optimization. Most of these
optimization classes will be merged into STM. In this section, isopod examples will be given for
the parameterization of boundary conditions and body forces given by Eqs. (84) and (89).
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3.4.1 Neumann Boundary Condition Force Inversion Example
In the first example, a Neumann boundary condition is optimized on the left side of a rectangular
domain, shown in Figure 18, in order to match four temperature measurements taken at the lo-
cations marked by the × symbols. The temperature measurements are taken from synthetic data
created by solving the forward problem with a = 113 and b = 288. The Neumann BC in this
problem is a combination of the two distributed loads shown in the figure given by the functions

∇T · n = a,

∇T · n = by,
(99)

where a and b are the parameters being optimized and y is the y-coordinate location. The other
boundary conditions on the top, bottom and right sides are fixed during the optimization.

Measurement Point

∇" # $ = &

∇" # $ = '(

∇"
#$

=
10
0

" = 200

" = 100

Figure 18: Force inversion setup for the parameterization of Neumann BCs on the rectangular
domain shown in grey. The finite element mesh used in this example is shown by the blue lines. In
this example the loading on the left boundary is described by the superposition of a constant and
linearly increasing load parameterized by a and b, indicated by the orange and blue arrows. These
parameters are being optimized to match the temperature field at the measurement points shown
by the ×’s in the body. A known constant heat flux is applied to the right boundary and the top
and bottom boundaries are at a fixed temperature.

Gradient and non-gradient based optimization algorithms from TAO are used to parameterize
a and b. For non-gradient optimization, the Nelder-Mead (taonm) algorithm is used which only

40



requires the solution of the forward problem. Gradient based optimization using the conjugate
gradient (taocg) method requires the solution of both the forward problem and adjoint problem
given by Eq. (81) along with determination of the PDE derivative. For this problem the PDE
derivative is given by Eq. (91). The Limited Memory Variable Metric method (taolmvm) is also
used and is a quasi-Newton optimization solver that uses the gradient to form an approximate
Hessian. Isopod currently does not have the ability to construct Hessians which excludes the use
of full Newton optimization solvers.

Isopod uses the MOOSE multiapp system for optimization where the forward and adjoint solves
are done on separate sub-apps. The main-app contains the optimization executioner and a reporter
is used to communicate data between the optimization solver and the transfers that send data
down to the sub-apps. Once the sub-app completes its solve, the data is transferred back to the
optimization executioner on the main app where the objective is evaluated and a new parameters
are determined for the next solve. This process is repeated until the either the objective or its
gradient driven below some threshold.

The adjoint and forward solution fields for the gradient based optimization algorithms are shown
in Figure 19. The adjoint variable is shown for the first optimization iteration where the misfit
between the measured temperature and forward solve temperatures is the largest. This misfit is ap-
plied in the adjoint solve using the DiracKernels. The contributions for the gradient in Eq. (68) are
computed in the adjoint sub-app using a modified FunctionSideIntegral postprocessor that will
integrate the adjoint variable together with the PDE derivative from Eq. (91) along the boundary.
The gradient terms are passed back to the optimization algorithm on the main app.

A threshold of 1e-4 is set for the absolute value of the gradient terms for the taolmvm solver
which results in an objective value of J = 0.05. The final temperature field is shown in the right
figure of Figure 19. A LineValueSampler is taken along the pink lines in Figure 19 and is plotted
in Figure 20 for each taolmvm iteration. The solution quickly converges after a single optimization
iteration.

The taonm, taocg and taolmvm optimization convergence results are shown in Figure 21 with
the threshold J = 0.05. taolmvm is by far the best performing algorithm for force inversion,
reaching an optimal solution in 4 optimization iterations. The taonm and taocg algorithms find
an optimal solution for a and b in a similar number of optimization iterations. However, since
taocg requires an additional adjoint solve to compute the gradient, taonm requires 4x fewer total
finite element solves to reach an optimial solve. Default parameters were used for with taocg and
better performance could probably be achieved with a better understanding of the TAO conjugate
gradient implementation and line search.

3.4.2 Body Load Force Inversion Example
In the second example, the quadratically varying body load shown on the left of Figure 22 will be
parameterized to optimally fit the temperature measurement data points shown on the right side
of Figure 22. The quadratically varying temperature field and its PDE derivative from Eq. (84) is
given by

fb(x) = ax2 + bx+ c, (100)

∂ĝ

∂p
=

[∫
N · ∂fb

∂a
dΩ,

∫
N · ∂fb

∂b
dΩ,

∫
N · ∂fb

∂c
dΩ

]>
=

[∫
N ·
(
x2
)

dΩ,

∫
N · (x) dΩ,

∫
N · (1) dΩ

]>
, (101)
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Figure 19: Left: Adjoint variable from the first iteration. Right: Temperature field from the
forward problem for the final optimization iteration.
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Figure 20: Per optimization iteration LineValueSampler results from the forward problem taken
along the pink lines in Figure 19. Measurement points and values shown by the black circles.
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Figure 21: Convergence of the objective function plotted versus optimization iterations (left) and
total solves (right)

where a, b and c are the parameters being optimized and x is the x-coordinate location. Dirichlet
boundary conditions are placed on the top and bottom surfaces with temperatures shown in Fig-
ure 22. The right and left boundaries are insulated with ∇T · n = 0. This example will highlight
the need for good initial conditions and bounds on the parameters.
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Figure 22: Left: Quadratically varying body load being parameterized. Right: Synthetic tempera-
ture field with two sets of measurements points shown by the yellow and green ×.

A threshold of 1e-4 is set for the absolute value of the gradient terms for the taolmvm solver
which results in an objective value of J = 4. A LineValueSampler is taken along the pink lines in
Figure 22 and is plotted in Figure 23 for the taolmvm iteration indicated in the legend. All eight
measurement points are used in the optimized solution shown in Figure 23. Convergence is much
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slower in case where the initial guess is much further off.
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Figure 23: Per optimization iteration LineValueSampler results from the forward problem taken
along the pink lines in Figure 22. Measurement points and values shown by the black circles.

Figure 24 shows the convergence rate for the taonm, taocg and taolmvm optimization solvers as
a function of total finite element solves. taocg solver converges to the wrong local minimum. This
highlights the need for enabling the bounded optimization algorithms in TAO such as bounded
conjugate gradient taobncg and taoblmvm for bounded LMVM. Again, taolmvm provides the least
computationally expensive solution. Overall, the convergence for all of the solvers is much slower
for this problem than the force boundary condition parameterization of a linear function given in
the previous section. This is partly due to a poor initial guess for the parameters. Figure 24 also
shows the effect of measurement points on the convergence rates for each solver. The suffix pts

1 uses the yellow × points in Figure 22, the suffix pts 2 uses the green × points and the suffix
pts 1&2 uses both sets of points. The convergence rate is not shown to be overly sensitive to the
set of measurement points chosen. Increasing the number of measurements points should increase
the convergence rate. The pts 2 points also appear to be in a region with a larger gradient of the
temperature field than those in pts 1 which should make pts 2 more sensitive to the parameters.
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Figure 24: Convergence of the objective function plotted versus total solves. Three sets of optimiza-
tions were performed using different sets of measurement points shown in Figure 22, as indicated
in the legend.
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4 Conclusion

This report details the improvements and added capabilities to the MOOSE framework to support
rapid mechanical property evaluation using data analytics. These updates include development
in the STM for improved stochastic simulations of complex multiphysics models and inclusion of
reduced-order modeling capabilities. Additionally, an inverse optimization framework has been de-
veloped to help utilize experimental data for material property and source identification in MOOSE
models.

Section 2 gives an overview of the STM and details the updates to the STM. To summarize, a
new input parameter in the stochastic MultiApps has been added to allow for more control on how
stochastic simulations are parallelized. This control shows that memory performance can be vastly
improved when dealing with large multiphysics models. Secondly, the surrogate model training
architecture in the STM has generalized, which paves the way for more intricate ROM techniques
and eases the development of new surrogate models. Finally, the section provides theory on the
currently available surrogate models in the STM and includes examples on their usage. The avail-
able models include polynomial chaos expansion, polynomial regression, Gaussian processing, and
reduced-basis proper orthogonal decomposition. The examples compare the three non-intrusive
methods for simple heat-conduction model, which provides some verfication on their implementa-
tion. There are also a couple more complex examples using POD and PC to show how these ROMs
can significantly improve run-times. The primary focus for future work in the STM involves more
realistic applications. Applying the capabilities in the module to high-impact problems might show
additional development needed and ideas for new capabilities.

An overview of the optimization algorithms implemented in Isopod are given in Section 3.
The source identification examples using Isopod provide a basic overview of the MultiApps imple-
mentation of Isopod and the MOOSE-based features required for solving gradient based inverse
optimization problems. The examples highlight several deficiencies in Isopod that motivate the
following future tasks:

• Cleaning up and documenting Isopod optimization algorithms and merging it with STM

• Expanding the optimization algorithms to additional PDE’s like elasticity and time dependent
problems

• Explore methods to improve convergence of optimization algorithms including regularization
and the implementation of a Hessian for use with Newton based optimization algorithms.
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A Example Input File Listings

Listing 1: Simple heat conduction input file

[Mesh]

type = GeneratedMesh

dim = 1

nx = 100

xmax = 1

elem_type = EDGE3

[]

[Variables]

[T]

order = SECOND

family = LAGRANGE

[]

[]

[Kernels]

[diffusion]

type = MatDiffusion

variable = T

diffusivity = k

[]

[source]

type = BodyForce

variable = T

value = 1.0

[]

[]

[Materials]

[conductivity]

type = GenericConstantMaterial

prop_names = k

prop_values = 2.0

[]

[]

[BCs]

[right]

type = DirichletBC

variable = T

boundary = right

value = 300

[]

[]

[Executioner]

type = Steady

solve_type = PJFNK

petsc_options_iname = ’-pc_type -pc_hypre_type ’

petsc_options_value = ’hypre boomeramg ’

[]

[Postprocessors]

[avg]
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type = AverageNodalVariableValue

variable = T

[]

[max]

type = NodalExtremeValue

variable = T

value_type = max

[]

[]

Listing 2: Heat conduction example training input file.

[StochasticTools]

[]

[Distributions]

[k_dist]

type = Uniform

lower_bound = 1

upper_bound = 10

[]

[q_dist]

type = Uniform

lower_bound = 9000

upper_bound = 11000

[]

[L_dist]

type = Uniform

lower_bound = 0.01

upper_bound = 0.05

[]

[Tinf_dist]

type = Uniform

lower_bound = 290

upper_bound = 310

[]

[]

[Samplers]

[sample]

type = MonteCarlo

num_rows = 1000

distributions = ’k_dist q_dist L_dist Tinf_dist ’

execute_on = PRE_MULTIAPP_SETUP

[]

[]

[MultiApps]

[sub]

type = SamplerFullSolveMultiApp

input_files = sub.i

sampler = sample

[]

[]

[Controls]

[cmdline]

type = MultiAppCommandLineControl

multi_app = sub
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sampler = sample

param_names = ’Materials/conductivity/prop_values

Kernels/source/value Mesh/xmax

BCs/right/value ’

[]

[]

[Transfers]

[data]

type = SamplerReporterTransfer

multi_app = sub

sampler = sample

stochastic_reporter = results

from_reporter = ’avg/value ’

[]

[]

[Reporters]

[results]

type = StochasticReporter

[]

[]

[Trainers]

[poly_chaos]

type = PolynomialChaosTrainer

execute_on = timestep_end

order = 4

distributions = ’k_dist q_dist L_dist Tinf_dist ’

sampler = sample

response = results/data:avg:value

[]

[poly_reg]

type = PolynomialRegressionTrainer

execute_on = timestep_end

max_degree = 4

sampler = sample

response = results/data:avg:value

regression_type = "ols"

[]

[gauss_process]

type = GaussianProcessTrainer

execute_on = timestep_end

covariance_function = ’rbf ’

standardize_params = ’true ’

standardize_data = ’true ’

sampler = sampler

response = results/data:avg:value

tao_options = ’-tao_bncg_type gd’

tune_parameters = ’ signal_variance length_factor ’

tuning_min = ’ 1e-9 1e-3’

tuning_max = ’ 100 100’

[]

[]

[Covariance]

[rbf]

type = SquaredExponentialCovariance

noise_variance = 1e-3
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signal_variance = 1

length_factor = ’0.038971 0.038971 0.038971 0.038971 ’

[]

[]

[Outputs]

file_base = training

[out]

type = SurrogateTrainerOutput

trainers = ’poly_chaos poly_reg gauss_process ’

execute_on = FINAL

[]

[]

Listing 3: Heat conduction example evaluation input file.

[StochasticTools]

[]

[Distributions]

[k_dist]

type = Uniform

lower_bound = 1

upper_bound = 10

[]

[q_dist]

type = Uniform

lower_bound = 9000

upper_bound = 11000

[]

[L_dist]

type = Uniform

lower_bound = 0.01

upper_bound = 0.05

[]

[Tinf_dist]

type = Uniform

lower_bound = 290

upper_bound = 310

[]

[]

[Samplers]

[sample]

type = MonteCarlo

num_rows = 100000

distributions = ’k_dist q_dist L_dist Tinf_dist ’

execute_on = initial

[]

[]

[Surrogates]

[poly_chaos]

type = PolynomialChaos

filename = ’training_poly_chaos.rd’

[]

[poly_reg]

type = PolynomialRegressionSurrogate

filename = ’training_poly_reg.rd’
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[]

[gauss_process]

type = GaussianProcess

filename = ’training_gauss_process.rd’

[]

[]

# Computing statistics

[VectorPostprocessors]

[evaluate]

type = EvaluateSurrogate

model = ’poly_chaos poly_reg guass_process ’

sampler = sample

[]

[]

[Reporters]

[stats]

type = StatisticsReporter

vectorpostprocessors = evaluate

compute = ’mean stddev ’

[]

[]

[Outputs]

csv = true

[]

Listing 4: POD example FOM input.

halfa = 10

fulla = 20

[Problem]

type = FEProblem

extra_tag_vectors = ’diff0 diff1 diff2 diff3 abs0 abs1 abs2 abs3 src0 src1 src2 ’

[]

[Mesh]

[msh]

type = CartesianMeshGenerator

dim = 2

dx = ’10 20 20 20 20 20 20 20 20’

dy = ’10 20 20 20 20 20 20 20 20’

ix = ’10 20 20 20 20 20 20 20 20’

iy = ’10 20 20 20 20 20 20 20 20’

subdomain_id = ’1 0 0 0 1 0 0 2 3

0 0 0 0 0 0 0 2 3

0 0 1 0 0 0 2 2 3

0 0 0 0 0 0 2 3 3

1 0 0 0 1 2 2 3 3

0 0 0 0 2 2 3 3 3

0 0 2 2 2 3 3 3 3

2 2 2 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3’

[]

[]

[Variables]
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[psi]

[]

[]

[Kernels]

[diff0]

type = MatDiffusion

variable = psi

diffusivity = D0

extra_vector_tags = ’diff0 ’

block = 0

[]

[diff1]

type = MatDiffusion

variable = psi

diffusivity = D1

extra_vector_tags = ’diff1 ’

block = 1

[]

[diff2]

type = MatDiffusion

variable = psi

diffusivity = D2

extra_vector_tags = ’diff2 ’

block = 2

[]

[diff3]

type = MatDiffusion

variable = psi

diffusivity = D3

extra_vector_tags = ’diff3 ’

block = 3

[]

[abs0]

type = MaterialReaction

variable = psi

coefficient = absxs0

extra_vector_tags = ’abs0 ’

block = 0

[]

[abs1]

type = MaterialReaction

variable = psi

coefficient = absxs1

extra_vector_tags = ’abs1 ’

block = 1

[]

[abs2]

type = MaterialReaction

variable = psi

coefficient = absxs2

extra_vector_tags = ’abs2 ’

block = 2

[]

[abs3]

type = MaterialReaction

variable = psi

coefficient = absxs3

extra_vector_tags = ’abs3 ’
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block = 3

[]

[src0]

type = BodyForce

variable = psi

value = 1

extra_vector_tags = ’src0 ’

block = 0

[]

[src1]

type = BodyForce

variable = psi

value = 1

extra_vector_tags = ’src1 ’

block = 1

[]

[src2]

type = BodyForce

variable = psi

value = 1

extra_vector_tags = ’src2 ’

block = 2

[]

[]

[Materials]

[D0]

type = GenericConstantMaterial

prop_names = D0

prop_values = 1

block = 0

[]

[D1]

type = GenericConstantMaterial

prop_names = D1

prop_values = 1

block = 1

[]

[D2]

type = GenericConstantMaterial

prop_names = D2

prop_values = 1

block = 2

[]

[D3]

type = GenericConstantMaterial

prop_names = D3

prop_values = 1

block = 3

[]

[absxs0]

type = GenericConstantMaterial

prop_names = absxs0

prop_values = 1

block = 0

[]

[absxs1]

type = GenericConstantMaterial

prop_names = absxs1
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prop_values = 1

block = 1

[]

[absxs2]

type = GenericConstantMaterial

prop_names = absxs2

prop_values = 1

block = 2

[]

[absxs3]

type = GenericConstantMaterial

prop_names = absxs3

prop_values = 1

block = 3

[]

[]

[BCs]

[left]

type = NeumannBC

variable = psi

boundary = left

value = 0

[]

[bottom]

type = NeumannBC

variable = psi

boundary = bottom

value = 0

[]

[top]

type = DirichletBC

variable = psi

boundary = top

value = 0

[]

[right]

type = DirichletBC

variable = psi

boundary = right

value = 0

[]

[]

[Executioner]

type = Steady

petsc_options_iname = ’-pc_type -pc_hypre_type ’

petsc_options_value = ’hypre boomeramg ’

[]

[Controls]

[stochastic]

type = SamplerReceiver

[]

[]

Listing 5: POD example training input

[StochasticTools]
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[]

[Distributions]

[D012_dist]

type = Uniform

lower_bound = 0.2

upper_bound = 0.8

[]

[D1_dist]

type = Uniform

lower_bound = 0.2

upper_bound = 0.8

[]

[D2_dist]

type = Uniform

lower_bound = 0.2

upper_bound = 0.8

[]

[D3_dist]

type = Uniform

lower_bound = 0.15

upper_bound = 0.6

[]

[absxs0_dist]

type = Uniform

lower_bound = 0.0425

upper_bound = 0.17

[]

[absxs1_dist]

type = Uniform

lower_bound = 0.065

upper_bound = 0.26

[]

[absxs2_dist]

type = Uniform

lower_bound = 0.04

upper_bound = 0.16

[]

[absxs3_dist]

type = Uniform

lower_bound = 0.005

upper_bound = 0.02

[]

[src_dist]

type = Uniform

lower_bound = 5

upper_bound = 20

[]

[]

[Samplers]

[sample]

type = LatinHypercube

distributions = ’D012_dist D012_dist D012_dist D3_dist

absxs0_dist absxs1_dist absxs2_dist absxs3_dist

src_dist src_dist src_dist ’

num_rows = 100

execute_on = PRE_MULTIAPP_SETUP

[]
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[]

[MultiApps]

[sub]

type = PODFullSolveMultiApp

input_files = sub.i

sampler = sample

trainer_name = ’pod_rb ’

execute_on = ’timestep_begin final ’

[]

[]

[Transfers]

[param]

type = SamplerParameterTransfer

multi_app = sub

sampler = sample

parameters = ’Materials/D0/prop_values

Materials/D1/prop_values

Materials/D2/prop_values

Materials/D3/prop_values

Materials/absxs0/prop_values

Materials/absxs1/prop_values

Materials/absxs2/prop_values

Materials/absxs3/prop_values

Kernels/src0/value

Kernels/src1/value

Kernels/src2/value ’

to_control = ’stochastic ’

execute_on = ’timestep_begin ’

check_multiapp_execute_on = false

[]

[data]

type = PODSamplerSolutionTransfer

multi_app = sub

sampler = sample

trainer_name = ’pod_rb ’

direction = ’from_multiapp ’

execute_on = ’timestep_begin ’

check_multiapp_execute_on = false

[]

[mode]

type = PODSamplerSolutionTransfer

multi_app = sub

sampler = sample

trainer_name = ’pod_rb ’

direction = ’to_multiapp ’

execute_on = ’final ’

check_multiapp_execute_on = false

[]

[res]

type = PODResidualTransfer

multi_app = sub

sampler = sample

trainer_name = ’pod_rb ’

execute_on = ’final ’

check_multiapp_execute_on = false

[]

[]
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[Trainers]

[pod_rb]

type = PODReducedBasisTrainer

var_names = ’psi ’

error_res = ’1e-9’

tag_names = ’diff0 diff1 diff2 diff3 abs0 abs1 abs2 abs3 src0 src1 src2 ’

tag_types = ’op op op op op op op op src src src ’

execute_on = ’timestep_begin final ’

[]

[]

[Outputs]

[out]

type = SurrogateTrainerOutput

trainers = ’pod_rb ’

execute_on = FINAL

[]

[]

Listing 6: POD example evaluation input

[StochasticTools]

[]

[Distributions]

[D012_dist]

type = Uniform

lower_bound = 0.2

upper_bound = 0.8

[]

[D1_dist]

type = Uniform

lower_bound = 0.2

upper_bound = 0.8

[]

[D2_dist]

type = Uniform

lower_bound = 0.2

upper_bound = 0.8

[]

[D3_dist]

type = Uniform

lower_bound = 0.15

upper_bound = 0.6

[]

[absxs0_dist]

type = Uniform

lower_bound = 0.0425

upper_bound = 0.17

[]

[absxs1_dist]

type = Uniform

lower_bound = 0.065

upper_bound = 0.26

[]

[absxs2_dist]

type = Uniform

lower_bound = 0.04
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upper_bound = 0.16

[]

[absxs3_dist]

type = Uniform

lower_bound = 0.005

upper_bound = 0.02

[]

[src_dist]

type = Uniform

lower_bound = 5

upper_bound = 20

[]

[]

[Samplers]

[sample]

type = LatinHypercube

distributions = ’D012_dist D012_dist D012_dist D3_dist

absxs0_dist absxs1_dist absxs2_dist absxs3_dist

src_dist src_dist src_dist ’

num_rows = 1000

execute_on = PRE_MULTIAPP_SETUP

[]

[]

[Surrogates]

[rbpod]

type = PODReducedBasisSurrogate

filename = ’trainer_out_pod_rb.rd’

change_rank = ’psi ’

new_ranks = ’40’

[]

[]

[VectorPostprocessors]

[res]

type = PODSurrogateTester

model = rbpod

sampler = sample

variable_name = ’psi ’

to_compute = nodal_l2

[]

[]

[Outputs]

csv = true

[]
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